

A DTN Packet Forwarding Scheme Inspired by Thermodynamics

Richard J. La University of Maryland March 21, 2008

Joint work with Mehdi Kalantari

- Overview of DTNs
- Packet forwarding
 - Model
- Thermodynamics Exchange of Heat
 - Temperature
 - Description of algorithm
- Preliminary Result & Conjectures
 - Distributional convergence of temperatures
- Simulation result

Overview of DTNs

- Packet Forwarding
 - Model
- Thermodynamics Exchange of Heat
 - Temperature
 - Description of algorithm
- Preliminary Result & Conjectures
 - Distributional convergence of temperatures
- Simulation result

- Evolution of Delay Tolerant Networks to Disruption Tolerant Networks
- Mobile nodes moving around an area/domain
- Sparse node connectivity
 - Network disconnected most of the time
 - Nodes rely on other nodes to relay bundles (i.e., messages) exploiting mobility
 - Mobility of nodes unknown in advance and may change over time
 - Multiple copies of bundles generated to increase the probability of successful delivery (e.g., controlled flooding)

- Overview of DTNs
- Packet Forwarding
 - Model
- Thermodynamics Exchange of Heat
 - Temperature
 - Description of algorithm
- Preliminary Result & Conjectures
 - Distributional convergence of temperatures
- Simulation result

- No fixed routing and global routing information
 - No end-to-end paths available from sources to destinations most of the time
 - Consequence of lack of network connectivity
 - Location of destinations and sequence of nodes to traverse unknown in advance
 - Disseminating/maintaining or accessing routing information difficult and impractical
 - When two nodes come in contact, they exchange information and figure out who will forward which bundles (if any)

- For forwarding/routing of bundles
 - Each node must make local decisions based on local information
 - Without global information or pre-specified routing information
 - When two nodes meet, they must estimate the quality of the other node as a possible relay node
 - Metric should allow them find out who has a better chance of successfully delivering bundles, possibly through other relay nodes, to the intended destinations

- Quality of a node as a relay node for a destination depends on ...
 - Set of other nodes it meets and interacts with;
 - Distribution of inter-meeting times with these nodes and that of meeting times;
 - Quality of channel when in contact
- Determined by mobility of the nodes!

- Should learn and exploit knowledge on mobility of other nodes
- Question is.... How do we do that??
- Simplicity less chance of something going wrong!
 - Summarize with one variable
 - Node's exposure to the gateway(s)
 - How much information it can forward towards gateway(s)
 - Proxy to quality as a relay node

- Overview of DTNs
- Packet Forwarding
 - Model
- Thermodynamics Exchange of Heat
 - Temperature
 - Description of algorithm
- Preliminary Result & Conjectures
 - Distributional convergence of temperatures
- Simulation result

-

Model for our setup

- Set of nodes $-\mathcal{N} \equiv \{1, 2, \cdots, n\}$
- Nodes move on some domain $\mathbb{D} \subset \mathbb{R}^2$
 - Mobility need not be homogeneous
- Trajectory of node i $\mathbb{L}_i := \{ \mathbf{L}_i(t); t \in \mathbb{R}_+ \}$
 - $L_i(t)$ location of node i at time t
- Messages arrive at each node according to some stochastic process
 - Messages to be delivered to an information gateway or sink
 - Gateway = node n

Model – one-hop connectivity

• One-hop connectivity: For each pair of nodes i and j, given by an on-off process $\mathbb{C}_{ij} \equiv \{C_{ij}(t); t \in \mathbb{R}_+\}$ where

$$C_{ij}(t) = \left\{ egin{array}{ll} 1 & ext{if } \left\| L_i(t) - L_j(t)
ight\|_2 \leq \gamma \\ 0 & ext{otherwise} \end{array}
ight.$$

Assumption

- Meeting times likely to be larger than the amount time needed to complete transfer of messages
- Transfer of bundles take place instantly
 - Nodes complete all desired transfer of messages while they are in contact
- Other case addressed using an ant-based packet forwarding scheme (another story)

Goal

- Goal: To design a simple, yet efficient single-copy packet forwarding scheme that exploits knowledge of nodes' mobility
- Introduce a time-varying measure at each node which quantifies either direct or indirect exposure to sink
 - Depends on nodes' mobility
 - Frequency of meetings and meeting times
 - Serves as an estimate of a node's ability to forward messages to sink
 - Used to guide packet forwarding decisions
 - Node with a smaller value forwards messages to node with a larger value

- Lies in a compact interval
- Increases while the node is in contact with sink
- Decreases when the node is not in contact with any other node
- While two nodes are in contact, their values are continually updated
 - Larger value decreases; smaller value increases

Temperature

- Each node maintains a variable called temperature
 - Serves as a measure of exposure to sink
 - $\theta_i(t)$ temperature of node i at time t
- Heat exchange rule: When two nodes i and j are in contact, the rate of change in temperature at node i is given by

$$\Delta \theta_i = \lambda_{ij}(\theta_j - \theta_i) , i, j \in \mathcal{N} ,$$

where $\lambda_{ij} \geq 0$ is the heat exchange coefficient from node j to node i

•
$$\lambda_{ij} = \lambda_{ji}$$
 for all $i, j \in \mathcal{N}^* := \mathcal{N} \setminus \{n\}$

4

... to a practical algorithm

Temperature of sink is constant:

$$\theta_n = \theta_n(t) = T > 0$$
 for all $t \ge 0$

- $\lambda_{ni} = 0$ for all $i \in \mathcal{N}^{\star}$
- Virtual ground (node 0) with constant temperature:

$$\theta_0 = \theta_0(t) = 0$$
 for all $t \ge 0$

- $\lambda_{0i} = 0$ for all $i \in \mathcal{N}^*$
- All nodes in \mathcal{N}^* are in contact with the ground unless in contact with sink
 - Lose heat to ground

... to a practical algorithm

- Rate of heat exchange is additive
 - When a node is in contact with more than one other node (in addition to ground):
 - rate of temperature change
 - = sum of rates at which temperature would change when it were in contact with each of these nodes separately

4

Description of algorithm

■ Temperature update rule: For all $i \in \mathcal{N}^*$

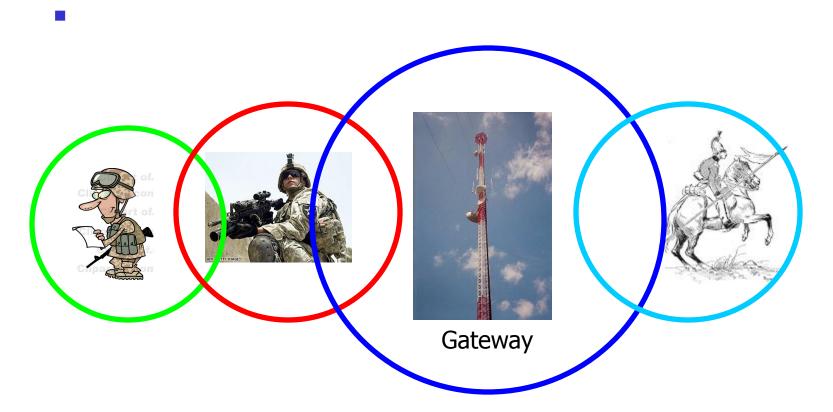
$$\frac{d}{dt}\theta_{i}(t) = \sum_{j=1}^{n} \lambda_{ij}(\theta_{j}(t) - \theta_{i}(t)) \mathbf{1} \{ ||L_{i}(t) - L_{j}(t)||_{2} \leq \gamma \}
-1 \{ ||L_{i}(t) - L_{n}(t)||_{2} > \gamma \} \lambda_{i0} \theta_{i}(t) ,$$
(1)

where

$$1\{A\} = \begin{cases} 1 & \text{if event } A \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$
.

- Initial conditions: $\theta_i(0) = 0$ for all $i \in \mathcal{N}^*$
- Temperature given by continuous-time stochastic process

Example:



- (Roughly) same temperature of two nodes that meet often
 - Can exchange messages between them regardless of which node first takes on the messages
 - Approximately equally preferable as relay node
- When a node stays in contact with the sink for a long time
 - Temperature will asymptotically approach that of sink
 - Can deliver messages to sink on behalf of other nodes
 - Good relay node
- Similar temperature profile of nodes in group mobility model

•

Stability of temperature

■ Proposition: The temperature processes $\Theta_i, i \in \mathcal{N}$, produced by the differential equations in (1) are stable in the sense that, starting from any non-negative initial values $\theta_i(0) < \infty$, $i \in \mathcal{N}^*$, the temperatures satisfy

$$\theta_i(t) \le \max\{T, \max\{\theta_i(0); i \in \mathcal{N}\}\}$$

for all $t \geq 0$ and for all $i \in \mathcal{N}$. Furthermore, if we assume the initial conditions $\theta_i(0) = 0$ for all $i \in \mathcal{N}^*$, we have $0 \leq \theta_i(t) < T$ for all $t \geq 0$ and for all $i \in \mathcal{N}^*$.

- Overview of DTNs
- Packet Forwarding
 - Model
- Thermodynamics Exchange of Heat
 - Temperature
 - Description of algorithm
- Preliminary Result & Conjectures
 - Distributional convergence of temperatures
- Simulation result

ı

Discrete-time model

- Discrete-time approximation
- Time is divided into contiguous timeslots t = 0, 1, ...
 - Duration of timeslot = Δ
 - No change in connectivity within a timeslot
- Equation (1) is approximated as

$$\theta_{i}(t+1) - \theta_{i}(t) = \sum_{j=1}^{n} \frac{\lambda_{ij}^{D}}{|\theta_{j}(t) - \theta_{i}(t)|} \left\{ \left\| L_{i}(t) - L_{j}(t) \right\|_{2} \leq \gamma \right\} - 1 \left\{ \left\| L_{i}(t) - L_{n}(t) \right\|_{2} > \gamma \right\} \frac{\lambda_{i0}^{D}}{|\theta_{i}(t)|} \theta_{i}(t)$$

• Denote vector of temperatures by $\Theta = (\theta_i; i \in \mathcal{N})$

Discrete-time model

- Assumption: The trajectories $\mathbb{L} := \{\mathbb{L}_i; i \in \mathcal{N}\}$ of the nodes are ergodic and jointly stationary.
 - $\mathbb{L}_i = (L_i(t); t = 0, 1, ...)$
 - Implies that the one-hop connectivity process

$$\mathbb{C} \equiv \{\mathbb{C}_{ij}; i, j \in \mathcal{N} \cup \{0\}\}\$$

is stationary and ergodic, where

$$\mathbb{C}_{ij} = \{C_{ij}(t); t = 0, 1, \ldots\}$$

1

Distributional convergence

Suppose that the connectivity matrix

$$\mathbb{C}(t) = [C_{ij}(t); i, j \in \mathcal{N} \cup \{0\}], t = 0, 1, \dots$$

is a given by a sequence of independent and identically distributed (i.i.d.) random vectors

 Assumption: A node can be in contact with at most one other node (not including ground)

Distributional convergence

• Proposition: For all sufficiently small $\Delta > 0$, starting with any initial conditions $\theta_i(0) \in [0,T]$ for all $i \in \mathcal{N}^*$, the temperatures of the nodes converge in distribution.

•

Sketch of proof

For each possible connectivity matrix C, define a function

$$f_{\mathbf{C}}: [0,T]^n \to [0,T]^n$$

where

$$f_{\mathrm{C},i}(\Theta) = \theta_i + \Delta \left(\sum_{j=1}^n \lambda_{ij}^D (\theta_j - \theta_i) C_{ij} - (1 - C_{in}) \lambda_{i0} \theta_i\right)$$

- Maps temperature vector Θ to another vector $f_{\mathbf{C}}(\Theta)$
 - Gives the temperature vector in the next timeslot
- For all sufficiently small ∆>0, each map is a contraction mapping

1

Sketch of proof ...

Starting with initial temperatures $\Theta(0)$, for all t = 0, 1, ...

$$\Theta(t+1) = f_{\mathbb{C}(t)} \circ f_{\mathbb{C}(t-1)} \circ \cdots f_{\mathbb{C}(0)}(\Theta(0))$$

Note that

$$\Theta(t+1) =_{st} f_{\mathbb{C}(0)} \circ f_{\mathbb{C}(1)} \circ \cdots f_{\mathbb{C}(t)}(\Theta(0))$$

- Virtue of i.i.d. assumption on $\mathbb{C}(t), t = 0, 1, ...$
- Furthermore, $\lim_{t\to\infty} f_{\mathbb{C}(0)}\circ f_{\mathbb{C}(1)}\circ\cdots f_{\mathbb{C}(t)}(\Theta(0))=\Theta^*$ exists and is independent of $\Theta(0)$
 - Consequence of contraction mappings

Conjectures

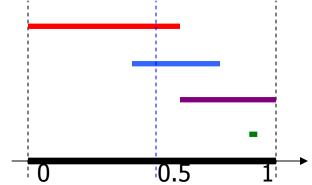
- Conjecture 1: We suspect that similar distributional convergence of temperatures holds in more general settings under necessary ergodicity assumption
- Conjecture 2: Under suitable assumptions on joint process of connectivity and temperatures (including stationarity and ergodicity) with $\mathbb{E}\left[\theta_i(0)\right] > 0$ for all $i \in \mathcal{N}^*$, a message generated at any node will reach the sink in a finite amount of time with probability one.

- Overview of DTNs
- Packet Forwarding
 - Model
- Thermodynamics Exchange of Heat
 - Temperature
 - Description of algorithm
- Preliminary Result & Conjectures
 - Distributional convergence of temperatures
- Simulation result

1

Simulation result - setup

- Four nodes moving according to Random Waypoint mobility on unit interval [0, 1]
 - Node 1 [0.0, 0.6]
 - Node 2 [0.4, 0.75]
 - Node 3 [0.6, 1.0]
 - Node 4 [0.9, 0.9]



- Gateway fixed at 0.5
- Transmission range fixed at γ =0.05
- Speed range: [0.0001, 0.1]

•

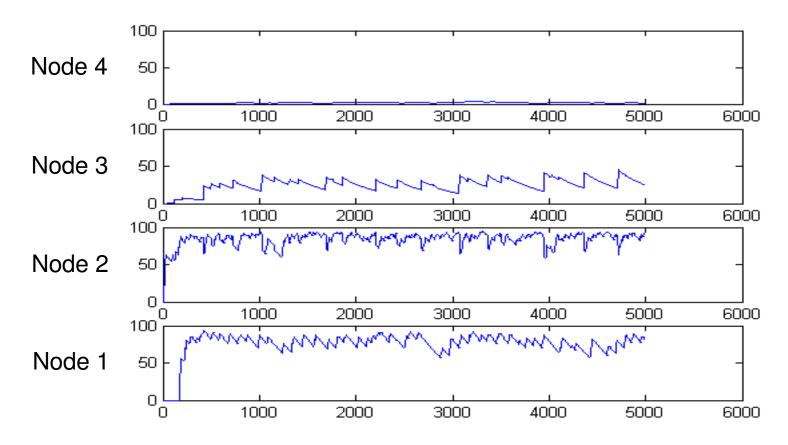
Simulation result - setup

- Gateway temperature: T = 100
- Heat exchange coefficients
 - $\lambda_{i5} = 0.05, 1 \le i \le 4$
 - $\lambda_{ij} = 0.01, \ 1 \le i, j \le 4$
 - $\lambda_{i0} = 0.002, \ 1 \le i \le 4$
- Packets arrive according to Poisson process with rate 0.1
 - Infinite buffer size no packet loss due to buffer overflow
- Simulation duration = 5,000

4

Simulation result

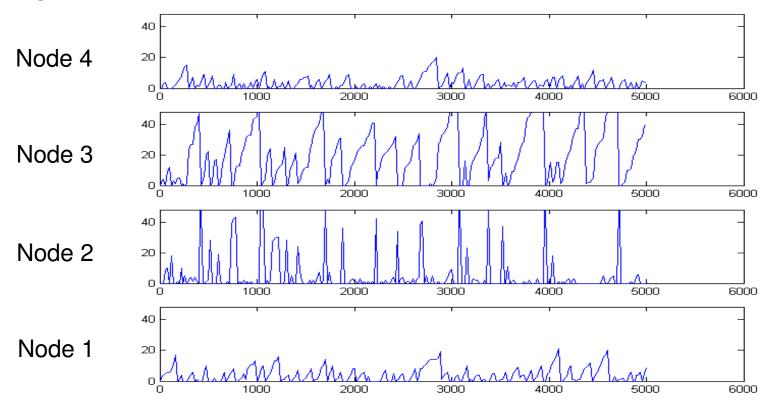
Temperatures:





Simulation result

• Queue sizes:



Conclusion

- Proposed a new single-copy packet forwarding scheme
 - Inspired by thermodynamics (exchange of heat)
- Established distributional convergence
 - Discrete-time model under i.i.d. connectivity
- Suspect that similar results hold under more general settings
- Guaranteed delivery of packets within a finite delay under some conditions?