Imperfect Randomized Algorithms for Optimal Control of Wireless Networks

Atilla Eryilmaz
(Ohio State University)

Joint work with:

Asu Ozdaglar, Devavrat Shah, Eytan Modiano (Massachusetts Institute of Technology)

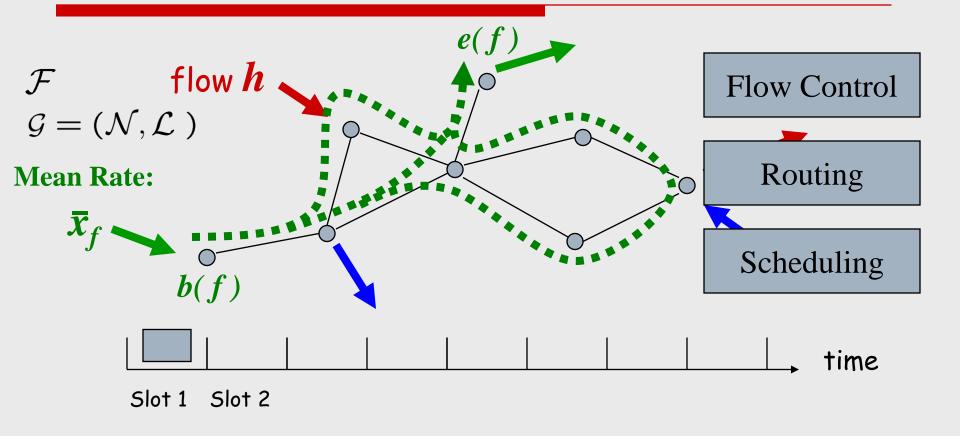
Outline

- ☐ Wireless Network Model
- □ Part 1 Optimization-based Network Control
 - (Dynamic) Network Optimal Control (NOC) Problem
 - (Static) Network Utility Maximization (NUM) Problem
 - Optimal solution for NOC through Dual-NUM
 - Problem Assumes high-complexity, centralized computations
- □ Part 2 Impact of Randomized Implementations
 - Description of a class of randomized algorithms amenable to lowcomplexity, distributed implementation
 - Optimality characteristics under randomized implementation
- ☐ Summary & Conclusions

Outline

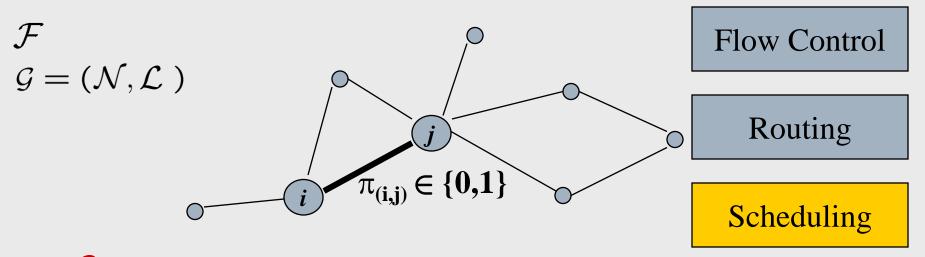
- Wireless Network Model
- □ Part 1 Optimization-based Network Control
 - (Dynamic) Network Optimal Control (NOC) Problem
 - (Static) Network Utility Maximization (NUM) Problem
 - Optimal solution for NOC through Dual-NUM
 - Problem Assumes high-complexity, centralized computations
- □ Part 2 Impact of Randomized Implementations
 - Description of a class of randomized algorithms amenable to lowcomplexity, distributed implementation
 - Optimality characteristics under randomized implementation
- ☐ Summary & Conclusions

Wireless Network Model



 $\square U_f$ (•) is a strictly concave, non-decreasing function that measures the utility of Flow-f as a function of its mean rate

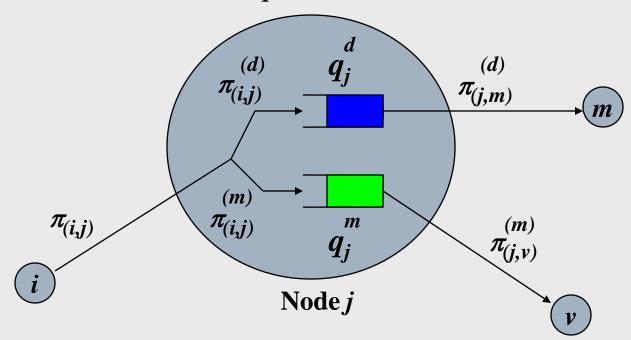
Wireless Network Model



- \square Set of feasible link activation vectors (or feasible schedules)
- Schedule of slot t, denoted $\pi[t] = (\pi_{(i,j)}[t])_{(i,j)\in\mathcal{L}}$, must be in \mathcal{S} , $\forall t$
- \square Π = Convex Hull{ \mathcal{S} }: *Achievable mean link rates*
- A *scheduling policy P* is a mapping from the current "state" of the system to feasible schedules
- \square Let \mathcal{P} denote the set of all scheduling policies

Queueing Architecture and Evolution

☐ Each node maintains a queue for each destination node.



☐ The evolution of a queue length is described by

$$q_i^d[t+1] = \left[q_i^d[t] + x_{into(i)}^{(d)}[t] + \pi_{into(i)}^{(d)}[t] - \pi_{out(i)}^{(d)}[t] \right]^+$$

Definitions

 \square A queue, say q_i^d , is *stable* if

$$\limsup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} q_i^d[t] < \infty$$

- □ A queue-length based flow control policy $X: \mathbf{q} \to [0, \mathbf{M}]^{|\mathcal{F}|} \text{ is a mapping from queue-lengths}$ to feasible rates
- \square Let \mathcal{X} denote the set of all queue-length-based flow control policies
- \square Then, the queue-length evolution for a given scheduling policy P, can be written as

$$q[t+1] = f(q[t], P, X(q[t])),$$

for some function f

Outline

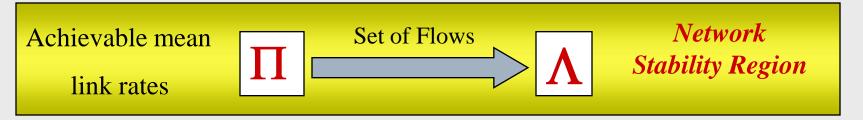
- ☐ Wireless Network Model
- □ Part 1 Optimization-based Network Control
 - (Dynamic) Network Optimal Control (NOC) Problem
 - (Static) Network Utility Maximization (NUM) Problem
 - Optimal solution for NOC through Dual-NUM
 - Problem Assumes high-complexity, centralized computations
- □ Part 2 Impact of Randomized Implementations
 - Description of a class of randomized algorithms amenable to lowcomplexity, distributed implementation
 - Optimality characteristics under randomized implementation
- Summary & Conclusions

Network Optimal Control (NOC) Problem

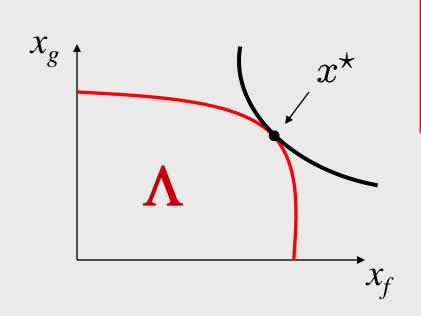
□ *Network Optimal Control (NOC)* Problem:

$$\begin{aligned} \max_{X \in \mathcal{X}, P \in \mathcal{P}} & \sum_{f \in \mathcal{F}} U_f(\bar{x}_f) \\ s.t. & \mathbf{q}[\mathbf{0}] \equiv \mathbf{0}, \qquad t \in \mathcal{Z}_+, \\ & \mathbf{q}[\mathbf{t}+1] = f\left(\mathbf{q}[\mathbf{t}], P, X(\mathbf{q}[\mathbf{t}])\right), \\ & \limsup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} q_i^d[t] < \infty, \qquad \forall i, d \in \mathcal{N}, \end{aligned}$$
 where $\bar{x}_f := \liminf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} x_f[t].$

Network Utility Maximization (NUM) Problem



 \square Define the *optimal mean rate vector* x^* as



$$x^\star \in \arg\max_x \sum_{f \in \mathcal{F}} U_f(x_f)$$
 $s.t. \quad x \in \Lambda$

Network Utility Maximization
(NUM)

21 March, 2008 CISS 2008 10

Dual Formulation of NUM

☐ A *Dual function* associated with the previous problem is

$$D(\lambda) = \sum_{f \in \mathcal{F}} \max_{\substack{x_f \geq 0}} \{U_f(x_f) - x_f \lambda_{b(f)}^{e(f)}\}$$
 Distributed Flow Control
$$+ \max_{\pi \in \Pi} \sum_{(i,j) \in \mathcal{L}} \pi_{(i,j)} \max_{d \in \mathcal{N}} \left\{ \left| \lambda_i^d - \lambda_j^d \right| \right\}$$
 Backpressure Scheduler/Router

where we λ_i^d can be interpreted as the price associated with sending a unit rate of flow from node i to node d.

 \square Then the **Dual Problem** is given as: $\min_{\lambda>0} D(\lambda)$

□ Fact: There is no duality gap, i.e., there exists a nonempty set Ψ^* such that:

 $\sum_{f \in \mathcal{F}} U_f(x_f^*) = D(\lambda^*), \quad \forall \lambda^* \in \Psi^*$

21 March, 2008 CISS 2008 11

Sub-gradient Methods to Solve NUM

☐ Employ Dual (or Primal-Dual) Methods:

$$\lambda_i^d[t+1] = \left[\lambda_i^d[t] + \theta_t \left(x_{into(i)}^{(d)}[t] + \pi_{into(i)}^{(d)}[t] - \pi_{out(i)}^{(d)}[t] \right) \right]^+$$

$$x_f[t] = \left[U_f^{\prime - 1} \left(\lambda_f[t] \right) \right]_0^M$$

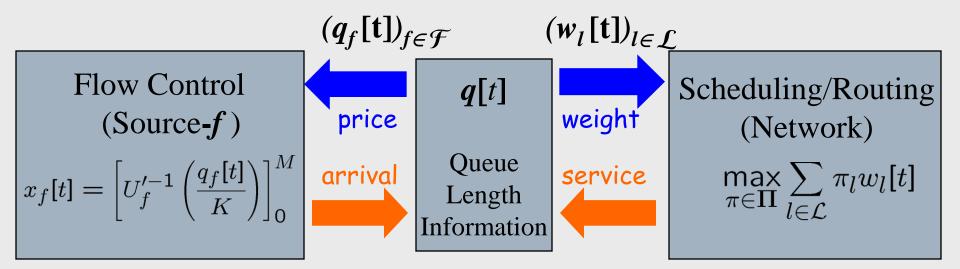
where θ_t is the step-size, and $\lambda_f = \lambda_{b(f)}^{e(f)}$

☐ Then, using results from optimization theory, we have, under appropriate step-size rules,

$$\lambda \to \Psi^*$$
, and $x \to x^*$

Cross-layer Mechanism for NOC

- \Box **q**[t] in the network can be interpreted as a scaled version of the prices $\lambda[t]$
- \square Introduce a design parameter K



 \square **q**[t] $\approx K \lambda[t]$, and the mechanism solves NOC

21 March, 2008 CISS 2008 13

Relevant Literature [partial list] & Complexity Issue

- □ Routing/Scheduling [Tassiulas, Ephremides '92], [Neely, Modiano, Rohrs '03], [Eryilmaz, Srikant '03], [Ho, Viswanathan '06], [Eryilmaz, D. Lun '07]
- Optimization [Kelly, Moullo, Tan '98], [Low, Lapsley '99], [Srikant '04]
- Cross-Layer [Stolyar '04], [Lin, Shroff '04], [Eryilmaz, Srikant '05, '06], [Neely, Modiano '05], [Chen, Low, Chiang, and Doyle '06]
- The solution to $\max_{\pi \in \Pi} \sum_{l \in \mathcal{L}} \pi_l w_l[t]$, assumed in these works, is generally difficult to compute (even NP-hard for many interference models)
- ☐ Thus, the cross-layer mechanism is impractical

Outline

- Wireless Network Model
- □ Part 1 Optimization-based Network Control
 - (Dynamic) Network Optimal Control (NOC) Problem
 - (Static) Network Utility Maximization (NUM) Problem
 - Optimal solution for NOC through Dual-NUM
 - Problem Assumes high-complexity, centralized computations
- □ Part 2 Impact of Randomized Implementations
 - Description of a class of randomized algorithms amenable to low-complexity, distributed implementation

15

- Optimality characteristics under randomized implementation
- Summary & Conclusions

Towards Distributed Implementation

☐ Several low-complexity schedulers are proposed to provide approximate solutions to

$$\max_{\pi \in \Pi} \sum_{l \in \mathcal{L}} \pi_l w_l[t]$$

(e.g. [Lin, Shroff '05], [Wu, Srikant '06], [Bui, Eryilmaz, Srikant, Wu '06], [Gupta, Lin, Srikant '06], [Modiano, Shah, Zussman '06], [Eryilmaz, Ozdaglar, Modiano '07], [Sanghavi, Bui, Srikant '07])

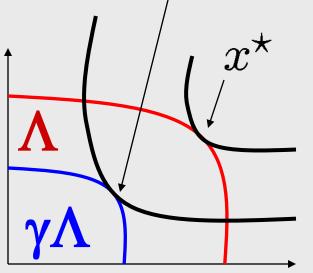
- ☐ However, little is done in understanding the optimality properties
- Our contribution: Study the optimality performance of a large class of high-performance randomized policies that are amenable to low-complexity and distributed implementation

An Earlier Work

 \square γ -Imperfect Scheduler [Lin, Shroff `05]: Assume that the scheduler picks $\pi[t]$ such that

$$\sum_{l \in \mathcal{L}} \pi_l[t] w_l[t] \ge \gamma \max_{\pi \in \Pi} \sum_{l \in \mathcal{L}} \pi_l w_l[t], \text{ for some } \gamma \in (0, 1]$$
 (1)

$$x^{\star}(\gamma) = \arg\max_{x \in \gamma \Lambda} \sum_{f} U_f(x_f)$$



For a given $\varepsilon > 0$,

$$\sum_{f} U_f(\bar{x}_f) \ge \sum_{f} U_f(x_f^{\star}(\gamma)) - \epsilon,$$

where $\bar{x}_f := \liminf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} x_f[t]$

21 March, 2008 CISS 2008 17

Comments

- Greedy Maximal Schedulers are available that satisfy (1) with $\gamma \leq \frac{1}{2}$
- ☐ However, these schedulers can perform arbitrarily badly depending on the interference model [Chaporkar, Kar, Sarkar '05]
- It is difficult to find low-complexity algorithms that guarantee (1) with γ close to 1.
- ☐ We study the network utilization factor of a **generic class of randomized schedulers that iteratively improve the schedule as the system evolves**

Joint Scheduling-Routing-Flow Control Policy

1. Dual Flow Control Policy:

• At each slot t, Flow-f updates its arrival rate as

$$x_f[t] = \left[U_f^{\prime - 1} \left(\frac{q_f[t]}{K} \right) \right]_0^M,$$

where *K* and *M* are positive design parameters.

 \square *K* can be interpreted as a measure of aggressiveness of the flow controller.

Joint Scheduling-Routing-Flow Control Policy

2. Generic Randomized Scheduling-Routing Policy:

• Define link weights:
$$w_{(i,j)}[t] = \max_{d} \left| q_i^d[t] - q_j^d[t] \right|$$

$$\pi^*[t] \in \arg\max_{\pi \in \Pi} \max_{\substack{m \in \Pi \\ (n,m) \in \mathcal{L}}} \max_{\substack{m \in \Pi \\ (n,m) \in \mathcal{L}}} [t]$$

• There exists a randomized policy (**R**) that picks a schedule $\pi^{(R)}$ satisfying

$$P\left(\pi^{(R)} = \pi^*[t] \mid \mathbf{q}[\mathbf{t}]\right) \ge \delta > 0 \quad \forall \mathbf{q}[\mathbf{t}].$$

PICK

• Repeat:

$$\pi^{(R)}[t] \leftarrow \text{Pick a random allocation;}$$

Set
$$\pi[t]$$
 s.t. $P((\mathbf{w}[t] \cdot \pi[t]) \ge \max\{(\mathbf{w}[t] \cdot \pi[t-1])\}$

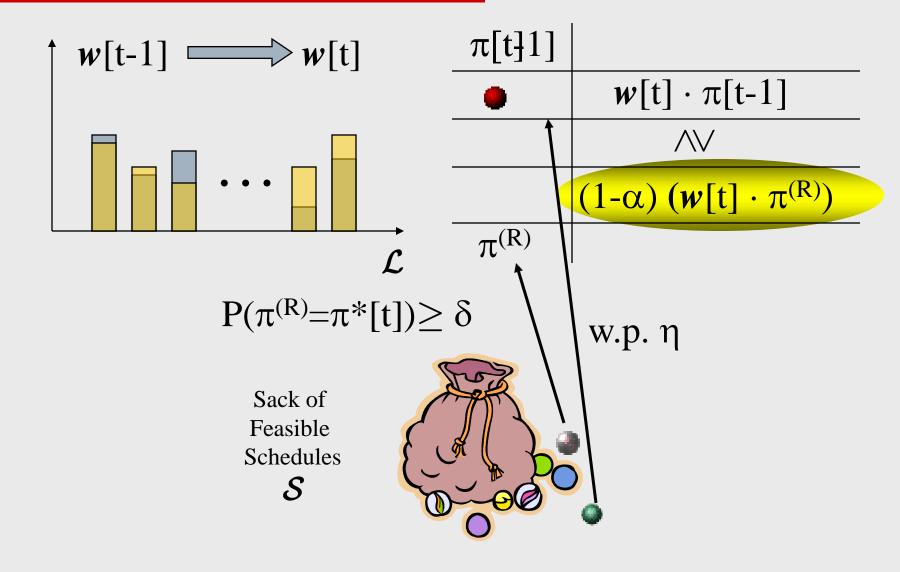
$$ig(1-lpha)(\mathbf{w}[t]\cdot\pi^{(R)}[t])\Big\}\Big)\geq ig(1-\eta)$$

$$t \leftarrow t + 1;$$

COMPUTE

COMPARE

Visualization – Picking $\pi[t]$



Main Result

□ Under the Generic Randomized Cross-layer Controller, we have

$$\sum_{f} U_f(\bar{x}_f) \ge \sum_{f} U_f\left(x_f^{\star} \left(1 - \alpha - 2\sqrt{\frac{\eta}{\delta}}\right)\right) - \frac{M^2|\mathcal{L}|}{2K},$$
where $\bar{x}_f := \liminf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} x_f[t]$

 \square Shows that the network utilization factor γ satisfies

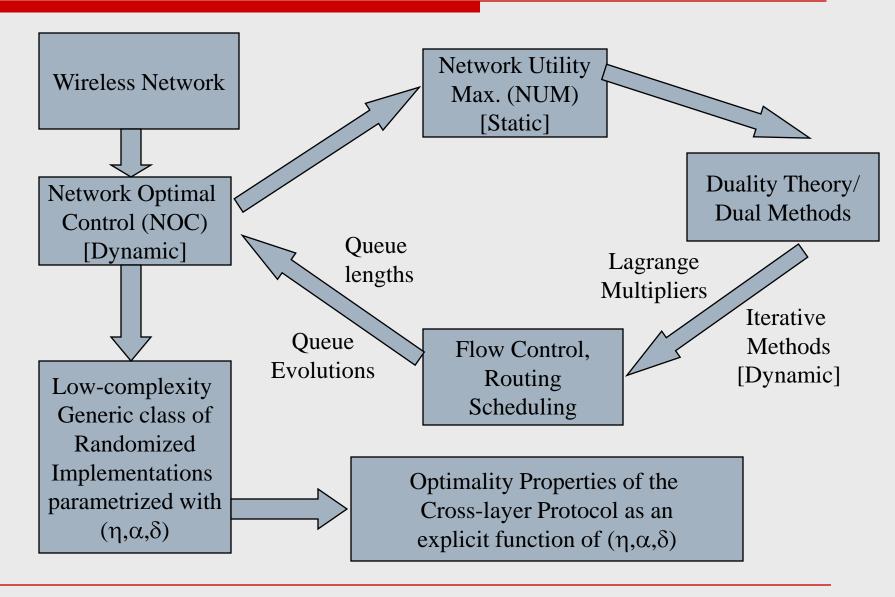
$$\gamma = 1 - \alpha - 2\sqrt{\frac{\eta}{\delta}}$$

 \square Easy to design low-complexity schedulers with $\gamma \approx 1$

Example Algorithms

- □ [Modiano, Shah, Zussman '06]
 - First-order interference model with $\eta = \alpha = 0, \delta > 0$
- □ [Eryilmaz, Ozdaglar, Modiano '07]
 - General interference model with $\eta = \alpha = 0$, $\delta > 0$
- ☐ [Modiano, Shah, Zussman '06] Gossip Algorithms
 - \blacksquare η and α can be set to arbitrarily small values at the expense of slower convergence
- □ [Sanghavi, Bui, Srikant `07]
 - First-order interference model with $\eta=0$, $\alpha=1/m$, $\delta>0$ for a design parameter m

Summary – A roadmap



Conclusions & Future Directions

- ☐ Identified the relationship between the degree of optimality and the algorithm parameters
- ☐ Observed that high degree of optimality is achievable with these schedulers with low-complexity implementations
- ☐ Development of other schedulers with favorable qualities in terms of metrics of interest (e.g. complexity, delay, rate of convergence) that fit into this framework

Thank you!

Questions?

Supplemental Slides

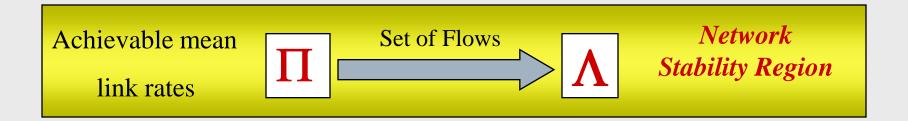
Translation of Π to Λ

$$\square \mathbf{x} = (x_{b(f)}^{e(f)})_f \ge \mathbf{0} \in \Lambda \text{ if }$$

• there exists a $\pi \in \Pi$ for which we have:

$$x_i^d + \pi_{into(i)}^d \leq \pi_{out(i)}^d, \quad d, i \in \mathcal{N}$$

(Flow Conservation Constraints)



21 March, 2008 CISS 2008 28