# Optimal Traffic Engineering Via Newton's Method

Dahai Xu, Ph.D.

Florham Park AT&T Labs - Research

Thanks to Howard Karloff, Mung Chiang, Ying Li and Jennifer Rexford

IEEE Conference on Information Sciences and Systems Mar. 19, 2008

### **Outline**

- Background
- 2 Network Entropy Maximization (NEM)
- 3 Solve NEM with Newton's Method
- Performance Evaluation
- Summary

### **Outline**

- Background
- 2 Network Entropy Maximization (NEM)
- 3 Solve NEM with Newton's Method
- 4 Performance Evaluation
- 5 Summary

# Minimum-cost Multicommodity Flow

- Minimum-cost Multicommodity Flow Problem
  - Classical Convex Optimization problem
  - Aliases
    - ★ Optimal Routing: Data Networks [Bertsekas-Gallager]
    - ★ Optimal Traffic Engineering: IP congestion control
- Question: can we realize Optimal Routing with link-state routing?

### **City Traffic Control**

- Big cities suffer from traffic congestion during rush hours
- The traffic to a same destination is a commodity

### **City Traffic Control**

- Big cities suffer from traffic congestion during rush hours
- The traffic to a same destination is a commodity
- Traffic control to realize optimal commodity solution:
  - Explicit Routing
  - Road Price

# **Traffic Control with Explicit Routing**

- At intersection A
  - Use Expressway I-95 if you go to Manhattan and your plate number is divisible with 7
  - Use Somewhere Lane if you go to Princeton and your plate number is divisible with 11
  - **.**..
- At intersection B ...

# **Traffic Control with Explicit Routing**

- At intersection A
  - Use Expressway I-95 if you go to Manhattan and your plate number is divisible with 7
  - Use Somewhere Lane if you go to Princeton and your plate number is divisible with 11
  - **.**...
- At intersection B ...
- Challenging even for drivers with Ph.D. degree

### **Traffic Control with Road Price**

- Balance traffic by setting price for each road segment
- More feasible than Explicit Routing

#### Traffic Control with Road Price

- Balance traffic by setting price for each road segment
- More feasible than Explicit Routing
- Assumption I: all drivers choose the "cheapest" path (even splitting if multiple cheapest paths)
  - ⇒ Impossible to achieve optimal routing and NP-hard to find road prices [Fortz-Thorup, Infocom-00]

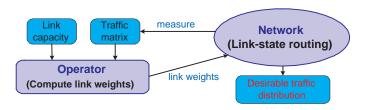
#### Traffic Control with Road Price

- Balance traffic by setting price for each road segment
- More feasible than Explicit Routing
- Assumption I: all drivers choose the "cheapest" path (even splitting if multiple cheapest paths)
  - ⇒ Impossible to achieve optimal routing and NP-hard to find road prices [Fortz-Thorup, Infocom-00]
- Assumption II:
  - ► More drivers choose the "cheapest" path
  - ► Fewer drivers choose more "expensive" path expecting less congestion (delay)
  - $\Rightarrow$  Always achieve optimal routing and Convex Optimization to find road prices [Xu-Chiang-Rexford, Infocom-08]

# **Link-State Routing**

- Routers
  - Exchange link weights (states) with Interior Gateway Protocols (IGPs):
     e.g. OSPF (Open Shortest Path First)
  - ▶ Distributively determine "next hop" to forward a packet/split traffic
- Network operator configures link weights to guide routing
  - ⇒ Traffic Engineering

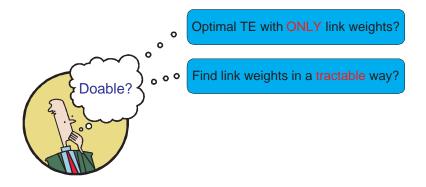
### **Tuning Link Weights**



- Traffic Engineering (TE): based on the offered traffic matrix
  - ► Traffic matrix: rate of traffic between each node pair from measurement
  - Centralized and off-line
  - ▶ Network-wide convex optimization objective: minimizes key metrics like max link utilization, sum of M/M/1 delay at each link, etc.

D. Xu (AT&T Labs) Newton for NEM Mar. 19, 2008 9 / 32

# Open Questions by 2008



# Open Questions by 2008



NEM/PEFT [Xu-Chiang-Rexford, Infocom-08]

### **Outline**

- Background
- 2 Network Entropy Maximization (NEM)
- 3 Solve NEM with Newton's Method
- Performance Evaluation
- Summary

#### **Notation**

- Directed graph: N nodes and E links
- Inputs

```
D(s,t) Traffic demand from s to t c_{u,v} Capacity of link (u,v)
```

Variables

```
w_{u,v} Weight for link (u, v)
f_{u,v}^t Commodity flow on link (u, v) destined to t
f_{u,v} \triangleq \sum_t f_{u,v}^t, Total flow on link (u, v)
```

# **Optimal TE Via Multicommodity-Flow**

#### **COMMODITY Problem:**

minimize 
$$\Phi(\{f_{u,v},c_{u,v}\})$$

convex objective

subject to 
$$\sum_{v:(s,v)\in\mathbb{E}}f_{s,v}^t-\sum_{u:(u,s)\in\mathbb{E}}f_{u,s}^t=D(s,t)$$
 flow conservation

$$f_{u,v} riangleq \sum_{t \in \mathbb{V}} f_{u,v}^t \leq c_{u,v}$$
 capacity constraint

variables 
$$f_{u,v} \ge f_{u,v}^t \ge 0$$
. link flow, commodity flow

input 
$$D(s,t), c_{u,v}$$
 demand, capacity

# **Optimal TE Via Multicommodity-Flow**

#### **COMMODITY Problem:**

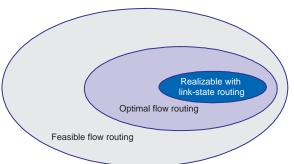
| minimize   | $\Phi(\{f_{u,v},c_{u,v}\})$                                                        | convex objective          |
|------------|------------------------------------------------------------------------------------|---------------------------|
| subject to | $\sum_{v:(s,v)\in\mathbb{E}}f_{s,v}^t-\sum_{u:(u,s)\in\mathbb{E}}f_{u,s}^t=D(s,t)$ | flow conservation         |
|            | $f_{u,v} 	riangleq \sum_{t \in \mathbb{V}} f_{u,v}^t \leq c_{u,v}$                 | capacity constraint       |
| variables  | $f_{u,v} \geq f_{u,v}^t \geq 0.$                                                   | link flow, commodity flow |
| input      | $D(s,t),c_{u,v}$                                                                   | demand, capacity          |

- Convex optimization (efficiently solvable).
- Can be realized with explicit routing: set up  $N^2E$  tunnels
- Link-state routing: *E* parameters

# **Necessary Capacity**

- Necessary Capacity
  - $\widetilde{c}_{u,v} \triangleq f_{u,v}$ : Total traffic on each link in optimal solution of COMMODITY
  - Minimal set of link capacities to realize optimal TE
- Set link weights with only necessary capacities

# Intuition Behind the Theory



- Numerous ways of flow-level routing to realize optimal TE (different traffic distribution on the paths)
- Choose the flow-level routing which can be realized with link-state routing.
- How? Pick an additional objective function for these optimal flow-level routings

### **Network Entropy Maximization**

- Assume we can enumerate all the paths from s to t,  $P_{s,t}^i$ . (only for analysis purpose)
- $x_{s,t}^i$ : probability (fraction) of forwarding a packet of demand D(s,t) to the *i*-th path  $(P_{s,t}^i)$

subject to 
$$\sum_{s,t,i:(u,v)\in P_{s,t}^i} D(s,t) x_{s,t}^i \leq \widetilde{c}_{u,v}$$
 capacity constraint

$$\sum_{i} x_{s,t}^{i} = 1$$

flow conservation

variables  $0 \le x_{s,t}^i \le 1$ .

forwarding probability

### **Network Entropy Maximization**

- Assume we can enumerate all the paths from s to t,  $P_{s,t}^i$ . (only for analysis purpose)
- $x_{s,t}^i$ : probability (fraction) of forwarding a packet of demand D(s,t) to the *i*-th path  $(P_{s,t}^i)$
- $z(x) = -x \log x$ : Entropy function

### **Network Entropy Maximization (NEM)**

maximize 
$$\sum_{s,t} D(s,t) \left( \sum_{P_{s,t}^i} z(x_{s,t}^i) \right)$$
 total entropy subject to  $\sum_{s,t,i:(u,v)\in P_{s,t}^i} D(s,t)x_{s,t}^i \leq \widetilde{c}_{u,v}$  capacity constraint

$$\sum_{i} x_{s,t}^{i} = 1$$
 flow conservation

variables 
$$0 \le x_{s,t}^i \le 1$$
. forwarding probability

#### **NEM** features

- NEM problem always has a global optimal solution.
  - ► Feasible solution: any optimal solution of COMMODITY problem
  - $\triangleright$  z(x) is a concave function
  - Convex Optimization
- Solving directly is not efficient (Infinite path enumeration with cycles)

#### **NEM** features

- NEM problem always has a global optimal solution.
  - ► Feasible solution: any optimal solution of COMMODITY problem
  - $\triangleright$  z(x) is a concave function
  - Convex Optimization
- Solving directly is not efficient (Infinite path enumeration with cycles)
- Prim-dual method (with E dual variables)

# **Optimal Solution of NEM**

Necessary Condition

$$\frac{x_{s,t}^{i}}{x_{s,t}^{j}} = \frac{e^{-\sum_{(u,v)} K_{p_{s,t}^{i}}^{(u,v)} \lambda_{u,v}}}{e^{-\sum_{(u,v)} K_{p_{s,t}^{j}}^{i} \lambda_{u,v}}}.$$

- $\lambda_{u,v}$ : dual variable for necessary capacity constraint
- $K_{P_{s,t}^i}^{(u,v)}$ : number of times  $P_{s,t}^i$  passes through link (u,v)

# **Optimal Solution of NEM**

Necessary Condition

$$\frac{x_{s,t}^{i}}{x_{s,t}^{j}} = \frac{e^{-\sum_{(u,v)} K_{p_{s,t}^{i}}^{(u,v)} \lambda_{u,v}}}{e^{-\sum_{(u,v)} K_{p_{s,t}^{j}}^{(u,v)} \lambda_{u,v}}}.$$

- $\lambda_{u,v}$ : dual variable for necessary capacity constraint
- $K_{P_{s,t}^i}^{(u,v)}$ : number of times  $P_{s,t}^i$  passes through link (u,v)

### Penalizing Exponential Flow-spliTting (PEFT)

PEFT: 
$$x_{u,t}^{i} = \frac{e^{-p_{u,t}^{i}}}{\sum_{j} e^{-p_{u,t}^{j}}}.$$

•  $p_{u,t}^i$ : sum of  $\lambda_{u,v}$  along the *i*th path

# **Algorithm for Optimizing Link Weights**

### **Optimize Over Link Weights**

- 1: Compute necessary capacities  $\widetilde{\mathbf{c}}$  by solving COMMODITY problem
- 2: **w** ← Any set of link weights
- 3:  $\mathbf{f} \leftarrow \mathsf{Traffic\_Distribution}(\mathbf{w})$
- 4: while  $f \neq \tilde{c}$  do
- 5: **w** ← Link\_Weight\_Update(**f**)
- 6: **f** ← Traffic\_Distribution(**w**)
- 7: end while

### Solve NEM Dual with Gradient Descent

Solve NEM Dual problem using gradient descent

$$\lambda(q+1) = [\lambda(q) - \alpha(q)\nabla Q(\lambda(q))]^+$$

•

$$\frac{\partial Q}{\partial \lambda_{u,v}}(q) 
= \widetilde{c}_{u,v} - \sum_{s,t,i} D(s,t) K_{P_{s,t}^{i}}^{(u,v)} x_{s,t}^{i}(q) 
= \widetilde{c}_{u,v} - f_{u,v}(q)$$

### **Outline**

- Background
- 2 Network Entropy Maximization (NEM)
- 3 Solve NEM with Newton's Method
- Performance Evaluation
- 5 Summary

### Solve NEM Dual with Newton's Method

ullet Gradient is scaled by the inverse of  $abla^2 Q(\lambda(q))$ 

$$oldsymbol{\lambda}(q+1) = \left[ oldsymbol{\lambda}(q) - 
abla^2 Q(oldsymbol{\lambda}(q))^{-1} 
abla Q(oldsymbol{\lambda}(q)) 
ight]^+.$$

•

$$\frac{\partial^2 Q}{\partial \lambda_{u,v} \partial \lambda_{u',v'}}(q) = \sum_{s,t,i} D(s,t) K_{P_{s,t}^i}^{(u,v)} K_{P_{s,t}^i}^{(u',v')} x_{s,t}^i(q).$$

# Hessian of NEM Dual with Cycles

- $\psi_{u,v}^t$ : Splitting fraction (destined to t) on link (u,v)
- $\eta_u^{s,t}$ : Total flow at node u for unit traffic demand from s to t
- Compute  $\psi_{u,v}^t$  and  $\eta_u^{s,t}$  by solving N sets of  $N \times N$  equations (see paper).

# Hessian of NEM Dual with Cycles

- $\psi_{u,v}^t$ : Splitting fraction (destined to t) on link (u,v)
- $\eta_u^{s,t}$ : Total flow at node u for unit traffic demand from s to t
- Compute  $\psi_{u,v}^t$  and  $\eta_u^{s,t}$  by solving N sets of  $N \times N$  equations (see paper).

### Theorem (Hessian of NEM Dual can be found in polynomial time)

$$\begin{split} &\frac{\partial^2 Q}{\partial \lambda_{u,v} \partial \lambda_{u',v'}} = \\ &= \begin{cases} &\sum_{t \in \mathbb{V}} \left( f_{u,v}^t \eta_{u'}^{v,t} \psi_{u',v'}^t + f_{u',v'}^t \eta_u^{v',t} \psi_{u,v}^t \right) & \text{if } (u,v) \neq (u',v') \\ &\sum_{t \in \mathbb{V}} \left( f_{u,v}^t (1 + 2 \eta_u^{v,t} \psi_{u,v}^t) \right) & \text{if } (u,v) = (u',v'). \end{cases} \end{split}$$

• Total time complexity  $O(N^4 + NE^2)$ 

# **Hessian of NEM Dual without Cycles**

- Optimal routing should contain no cycles
- Downward PEFT: approximation by forwarding traffic only on next hops closer to the destination
- Total time complexity  $O(N^3 + N^2 E)$

### **Outline**

- Background
- 2 Network Entropy Maximization (NEM)
- 3 Solve NEM with Newton's Method
- Performance Evaluation
- **5** Summary

# Various Methods of Solving NEM

- Exact PEFT with Gradient Descent
- Downward PEFT with Gradient Descent
- Exact PEFT with Newton's Method
- Downward PEFT with Newton's Method

# **Network Topologies**



| Tanalami |                                        |                                                                         |                                                                           |
|----------|----------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|
| ropology | Node #                                 | LINK #                                                                  | Link Capacity                                                             |
|          |                                        |                                                                         |                                                                           |
| Backbone | 11                                     | 28                                                                      | 10Gbps                                                                    |
|          |                                        |                                                                         |                                                                           |
| 2-level  | 50                                     | 148                                                                     | local access(200), long-haul (1000)                                       |
| 2-level  | 50                                     | 212                                                                     | local access(200), long-haul (1000)                                       |
| Random   | 50                                     | 228                                                                     | 1000                                                                      |
| Random   | 50                                     | 245                                                                     | 1000                                                                      |
| Random   | 100                                    | 403                                                                     | 1000                                                                      |
|          | 2-level<br>2-level<br>Random<br>Random | Topology Node #  Backbone 11  2-level 50 2-level 50 Random 50 Random 50 | Backbone 11 28  2-level 50 148 2-level 50 212 Random 50 228 Random 50 245 |

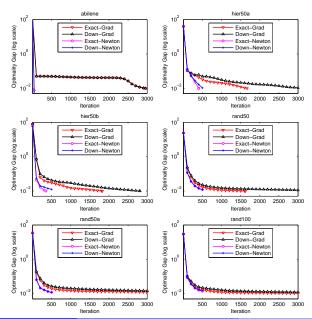
Abilana Naturark

#### **Traffic Matrices**

- Abilene Network: measured data on Nov. 15th, 2005
- Other networks: same as [Fortz-Thorup-2000]
- Uniformly scale the traffic matrix with maximum link utilization close to 100% in optimal TE.

D. Xu (AT&T Labs) Newton for NEM Mar. 19, 2008 28 / 32

### **Convergence Behavior**



# **Average Running Time per Iteration**

|         |        |        | Time per Iteration (millisecond) |      |        |       |  |
|---------|--------|--------|----------------------------------|------|--------|-------|--|
| Net. ID | Node # | Link # | Gradient                         |      | Newton |       |  |
|         |        |        | Exact                            | Down | Exact  | Down  |  |
| abilene | 11     | 28     | 3.4                              | 2.1  | 7.9    | 3.6   |  |
| hier50a | 50     | 148    | 13.7                             | 5.9  | 57.1   | 17.7  |  |
| hier50b | 50     | 212    | 13.8                             | 6.3  | 82.4   | 36.4  |  |
| rand50  | 50     | 228    | 19.4                             | 7.1  | 94.8   | 43.9  |  |
| rand50a | 50     | 245    | 24.3                             | 7.6  | 110.8  | 50.0  |  |
| rand100 | 100    | 403    | 175.5                            | 36.7 | 911.7  | 282.3 |  |

# **Average Running Time per Iteration**

|         |        |        | Time per Iteration (millisecond) |      |        |       |  |
|---------|--------|--------|----------------------------------|------|--------|-------|--|
| Net. ID | Node # | Link # | Gradient                         |      | Newton |       |  |
|         |        |        | Exact                            | Down | Exact  | Down  |  |
| abilene | 11     | 28     | 3.4                              | 2.1  | 7.9    | 3.6   |  |
| hier50a | 50     | 148    | 13.7                             | 5.9  | 57.1   | 17.7  |  |
| hier50b | 50     | 212    | 13.8                             | 6.3  | 82.4   | 36.4  |  |
| rand50  | 50     | 228    | 19.4                             | 7.1  | 94.8   | 43.9  |  |
| rand50a | 50     | 245    | 24.3                             | 7.6  | 110.8  | 50.0  |  |
| rand100 | 100    | 403    | 175.5                            | 36.7 | 911.7  | 282.3 |  |

- Time per iteration: Newton's method > Gradient descent: inverse of the Hessian
- Can be considerably simplified by adopting quasi-Newton methods

### **Outline**

- Background
- 2 Network Entropy Maximization (NEM)
- 3 Solve NEM with Newton's Method
- Performance Evaluation
- Summary

#### **Conclusion**

- Minimum-cost multicommodity flow can be realized by a link-state routing protocol (PEFT) from solving NEM.
- Efficient Newton's methods to solve the NEM problem with an infinite number of variables.

D. Xu (AT&T Labs) Newton for NEM Mar. 19, 2008 32 / 32

#### **Conclusion**

- Minimum-cost multicommodity flow can be realized by a link-state routing protocol (PEFT) from solving NEM.
- Efficient Newton's methods to solve the NEM problem with an infinite number of variables.
- Open Problems
  - Computational Complexity of NEM/PEFT: Polynomial?
  - ► Solve NEM/PEFT + COMMODITY problem altogether?
  - ► Whether DEFT [Xu-Chiang-Rexford, Infocom-07] can achieve optimal traffic engineering as well?
- More Information http://www.research.att.com/~dahaixu