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Abstract—In this paper we consider the behaviour of both
primal and dual multi-path algorithms for a simple network
of three resources. We examine the equilibrium behaviour of
our models as well as their transient response to the effect of
a resource failing. The timescales over which the multi-path
algorithms respond to changes in the network conditions are
seen to be closely related to the round trip times of the different
routes.

I. INTRODUCTION

In this paper we study multi-path algorithms for the problem
of joint routing and rate control in packet-based communica-
tion networks.

The basic algorithms are described in Section II. An exam-
ple network is introduced in Section III and we discuss our
experiments with this network in Section IV.

II. ALGORITHM DESCRIPTIONS

A. Network description

We suppose that the network consists of a collection of
resources j ∈ J and a collection of sources s ∈ S. Sets of
resources are termed routes, r, and each source is uniquely
identified with a set of routes. The notation s(r) means the
source identified with the route r. For each route r there is an
associated flow xr(t). Let Trj be the propagation delay from
source s(r) to resource j and Tjr the propagation delay from
resource j to source s(r). The round trip time for route r is
then given by Tr = Trj + Tjr for all j ∈ r.

We use the notation a = (b)+c to mean a = b if c > 0
and a = max(0, b) if c = 0.

B. Primal algorithm

For our example of a primal algorithm we consider the
routing extension to scalable TCP given in [1] and which
we briefly summarize here. (See [4] for further discussion of
scalable TCP and [3] for further background on primal multi-
path algorithms.) In this model fluid flows, xr(t), operate as
follows.

ẋr(t) =
xr(t− Tr)

Tr

(
a(1− λr(t))− brys(r)(t)λr(t)

)+
xr(t)

(1)
where

λr(t) = 1−
∏
j∈r

(1− µj(t− Tjr)) (2)

ys(t) =
∑
r∈s

xr(t− Tr) (3)

and

µj(t) = pj

∑
r:j∈r

xr(t− Trj)

 . (4)

Each resource j has a capacity Cj and a penalty function
given by

pj(zj) =
(
zj
Cj

)βj
(5)

for some constant βj .
1) Local stability condition: A sufficient condition [1] for

local stability of the primal algorithm is that

a(1 + β) <
π

2
. (6)

C. Dual algorithm

Our example of a dual algorithm uses the controlled splitting
approach to the problem of joint routing and flow control
presented in [2]. This scheme adopts a utility function

Us(y) =

{
ws

y1−α

1−α if α 6= 1
ws log(y) if α = 1

(7)

for ws > 0 and α > 0. The parameter q satisfying q = p/(p+
1) for some p > 0 is also used.

The fluid flows, xr(t), are then given by

xr(t) = λr(t)−(p+1)wp+1
s ys(r)(t)1−α(p+1) (8)

where

ẏs(t) = κsys(t)
1
p+1

(∑
r∈s

xr(t− Tr)q − ys(t)q
)+

ys

(9)

and
λr(t) =

∑
j∈r

µj(t− Tjr) . (10)

The quantities µj(t) satisfy the following relations.

µ̇j(t) = κjµj(t) (zj(t)− Cj)+µj(t) (11)

where
zj(t) =

∑
r:j∈r

xr(t− Trj) . (12)

The parameters κj and κs are small positive gain parame-
ters.
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Fig. 1. The example network of three resources and a total of six routes.

1) Local stability conditions: When α(p + 1) > 1 we
have local stability [2] of the dual algorithm if the following
sufficient conditions hold for each resource j and for each
source s

κj(p+ 1)TjCj <
1
2

(13)

where
Tj =

1
Cj

∑
r:j∈r

xrTr (14)

and
κs ((p+ 1)α− 1)Ts <

1
2

(15)

where
Ts =

q

yps

∑
r∈s

xqrTr . (16)

III. EXAMPLE NETWORK

We consider a simple example network consisting of just
three resources labelled j1, j2 and j3. Each resource has a
capacity of Cj = 10.

There are three sources labelled s1, s2 and s3 and a total of
six routes labelled r1, . . . , r6. Source s1 uses routes r1 and r2,
source s2 uses routes r3 and r4 and source s3 uses routes r5
and r6.

Routes r1 and r5 consist of the single resource j1, routes r2
and r3 consist of the resource j2 and routes r4 and r6 consist
of the single resource j3.

Figure 1 shows the assignment of routes, resources and
sources whereas Table I shows the propagation delays and
round trip times. Note that the round trip times for the
resources j1, j2 and j3 vary widely and are in the propor-
tions 1 : 10 : 100.

TABLE I
DELAY AND ROUND TRIP TIME PARAMETERS

j r Trj Tjr Tr

j1 r1 0.01 0.01 0.02
j1 r5 0.01 0.01 0.02
j2 r2 0.1 0.1 0.2
j2 r3 0.1 0.1 0.2
j3 r4 1.0 1.0 2.0
j3 r6 1.0 1.0 2.0

TABLE II
DUAL PARAMETERS

j κj s κs ws

j1 0.1 s1 0.25 0.1
j2 0.01 s2 0.01 0.1
j3 0.001 s3 0.01 0.1

IV. EXPERIMENTS

In this section we discuss a number of experiments con-
ducted with the example network. We look at the equilibrium
behaviour as well as the transient response generated by
resource j2 failing entirely. We arrange our experiments so
that the flows have converged to their equilibrium values by
time 0 when resource j2 is then failed. As a consequence
flows xr2(t) = xr3(t) = 0 for t > 0.

The fluid flow models are solved by a simple integration
approach with a fixed step size of δt = 0.0001.

A. Primal algorithm

The primal algorithm requires the selection of several
parameters and in these experiments we used the parameter
values a = 0.1, br = 0.875 and βj = 10 for each route r and
resource j, respectively.

Figures 2 and 3 show our the flows were seen to evolve
over time. In Figure 2 observe how flows xr1 and xr5 react
quickly when at time 0 resource j2 is failed since they both
use resource j1 with the short round trip time. In contrast,
flows xr4 and xr6 both use resource j3 with the longer round
trip time and react more slowly.

We see from Figure 3 that the total flow for source s2 (that
is, xr3 + xr4 ) declines rather severely when resource j2 fails
and only recovers rather slowly to a new equilibrium value.
The flows for sources s1 and s3 are able to react more quickly
since they both can route load to resource j1 which has the
short round trip time. Indeed, the joint flows for sources s1
and s3 are indistinguishable on the graph.

B. Dual algorithm

For the dual algorithm we used the parameter values given
in Table II. The various gain parameters were chosen to ensure
local stability of our solutions in accordance with the stated
conditions given above. The parameter p was taken to be 7
and thus q = 7/8.

Figures 4 and 5 show the equivalent results with the
operation of the controlled splitting dual algorithm.

We again find that flows xr1 and xr5 react quickly since they
use the resource with the short round trip time. This example
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Fig. 2. Flows over time under the operation of the primal algorithm.

illustrates how at first xr6 increases slightly before declining
to its new equilibrium value.

V. CONCLUSION

In this brief study of a simple three resource network we
have examined the behaviour of both primal and dual multi-
path algorithms. A notable feature in our results is the different
timescales over which sources will attempt to re-balance their
flows across the available paths.

ACKNOWLEDGMENT

The author would like to thank Frank Kelly, Peter Key, Don
Towsley and Tom Voice for useful discussions on multi-path
problems. The author also wishes to acknowledge the financial
support of the EPSRC (research grant GR/S86266/01).

REFERENCES

[1] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint routing
and rate control,” ACM SIGCOMM Computer Communication Review,
vol. 35, no. 2, pp. 5–12, Apr. 2005.

[2] T. Voice, “Stability of mulit-path dual congestion control algorithms,”
IEEE/ACM Trans. Netw., vol. 15, no. 6, pp. 1231–1239, Dec. 2007.

[3] H. Han, S. Shakkottai, C. Hollot, R. Srikant, and D. Towsley, “Overlay
TCP for multi-path routing and congestion control,” in ENS-INRIA ARC-
TCP Workshop, 2003, Paris, France.

[4] T. Kelly, “Scalable TCP: improving performance in highspeed wide area
networks,” Computer Communication Review, vol. 32, no. 2, pp. 83–91,
2003.

0 100 200 300 400

0

2

4

6

8

Time, t

Fl
ow

s

Flows
x1 ++ x2
x3 ++ x4
x5 ++ x6

Fig. 3. Aggregate flows for the different sources with the primal algorithm.
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Fig. 4. Flows over time under the operation of the dual algorithm.
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Fig. 5. Aggregate flows for the different sources with the dual algorithm.
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