Optimal Resource Allocation for OFDM Uplink Communication: A Primal-Dual Approach

Minghua Chen and Jianwei Huang

The Chinese University of Hong Kong

Acknowledgement: R. Agrawal, R. Berry, V. Subramanian
OFDM Systems

- Frequency band divided into several parallel orthogonal carriers/tones.
- High spectrum efficiency.
- Eliminate inter-symbol-interference (ICI) due to multi-path fading.
- Applications: WiMAX (802.16), Wi-Fi (802.11a/g), DSL, etc.
OFDM Systems

- Frequency band divided into several parallel orthogonal carriers/tones.
- High spectrum efficiency.
- Eliminate inter-symbol-interference (ICI) due to multi-path fading.
- Applications: WiMAX (802.16), Wi-Fi (802.11a/g), DSL, etc.
- How to perform distributed and efficient resource allocation?
Resource Allocation

- Assign each user a utility, $U_i(\cdot)$, depending on delay, throughput, etc.
Resource Allocation

- Assign each user a utility, $U_i(\cdot)$, depending on delay, throughput, etc.
- Scheduler maximizes first order change in total utility.

$$\max_{r \in \mathcal{R}(e)} \nabla U(X(t)) \cdot r = \max_{r \in \mathcal{R}(e)} \sum_i \dot{U}_i(X_i(t)) r_i,$$

- Motivated by channel-aware and gradient-based scheduling
- Myopic policy, requires no knowledge of channel or arrival statistics.
Resource Allocation

- Assign each user a utility, $U_i(\cdot)$, depending on delay, throughput, etc.
- Scheduler maximizes first order change in total utility.

$$\max_{r \in \mathcal{R}(e)} \nabla U(X(t)) \cdot r = \max_{r \in \mathcal{R}(e)} \sum_i \dot{U}_i(X_i(t))r_i,$$

- Motivated by channel-aware and gradient-based scheduling
- Myopic policy, requires no knowledge of channel or arrival statistics.

- Resource allocation = **weighted rate maximization**
 - “Network”: assigning carriers to users
 - “User”: assign power over carriers
Achievable Rate Per Carrier

If a carrier j is allocated to a single user i:

- $r_{ij} = \log(1 + \text{SNR}) = \log(1 + p_{ij}e_{ij})$
- $p_{ij} = \text{power user } i \text{ allocates to carrier } j.$
- $e_{ij} = \text{received SNR/unit transmit power.}$
Achievable Rate Per Carrier

- If a carrier j is allocated to a single user i:
 - $r_{ij} = \log(1 + SNR) = \log(1 + p_{ij}e_{ij})$
 - $p_{ij} = \text{power user } i \text{ allocates to carrier } j$.
 - $e_{ij} = \text{received SNR/unit transmit power}$.

- By allowing time-sharing:
 - $r_{ij} = x_{ij} \log \left(1 + \frac{p_{ij}e_{ij}}{x_{ij}} \right)$
 - $x_{ij} \in [0, 1] = \text{fraction of carrier } j \text{ allocated to user } i$.

Why “time-sharing”?
- Convexify the problem.
- Can be achieved in practice.
- Not affecting the optimal objective value with large number of carriers.
Achievable Rate Per Carrier

- If a carrier j is allocated to a single user i:
 - $r_{ij} = \log(1 + \text{SNR}) = \log (1 + p_{ij}e_{ij})$
 - $p_{ij} = \text{power user } i \text{ allocates to carrier } j$.
 - $e_{ij} = \text{received SNR/unit transmit power}$.

- By allowing time-sharing:
 - $r_{ij} = x_{ij} \log \left(1 + \frac{p_{ij}}{x_{ij}}e_{ij}\right)$
 - $x_{ij} \in [0, 1] = \text{fraction of carrier } j \text{ allocated to user } i$.

- Why “time-sharing”?
 - Convexify the problem.
 - Can be achieved in practice.
 - Not affecting the optimal objective value with large number of carriers.
OFDMA rate region

- Rate region:

\[
\mathcal{R}(\mathbf{e}) = \left\{ \mathbf{r} : r_i = \sum_j x_{ij} \log \left(1 + \frac{p_{ij} e_{ij}}{x_{ij}} \right), \forall i \right\}
\]

where \((\mathbf{x}, \mathbf{p}) \in \mathcal{X}\) such that

- \((\mathbf{x}, \mathbf{p}) \geq 0\)
- Each user \(i\): \(\sum_j p_{ij} \leq P_i\) (uplink transmission power constraint)
- Each carrier \(j\): \(\sum_i x_{ij} \leq 1\) (channel allocation constraint)
OFDMA rate region

Rate region:

\[\mathcal{R}(\mathbf{e}) = \left\{ \mathbf{r} : r_i = \sum_j x_{ij} \log \left(1 + \frac{p_{ij} e_{ij}}{x_{ij}} \right), \forall i \right\} \]

where \((\mathbf{x}, \mathbf{p}) \in \mathcal{X}\) such that

- \((\mathbf{x}, \mathbf{p}) \geq \mathbf{0}\)
- Each user \(i\): \(\sum_j p_{ij} \leq P_i\) (uplink transmission power constraint)
- Each carrier \(j\): \(\sum_i x_{ij} \leq 1\) (channel allocation constraint)

Variation: sub-channelization (bundle carriers to reduce overhead)

- Interleaved (802.16 standard mode)
- Adjacent (Band AMC mode)
- Random (e.g. frequency hopped)
Weighted Rate Maximization Problem

\[
\max_{r \in \mathcal{R}(e)} \mathbf{w} \cdot \mathbf{r} = \max_{(x, p) \in \mathcal{X}} \sum_i w_i \sum_j x_{ij} \log \left(1 + \frac{p_{ij} e_{ij}}{x_{ij}} \right) \quad \text{(OPT)}
\]
Weighted Rate Maximization Problem

\[
\begin{align*}
\max_{r \in \mathcal{R}(e)} \mathbf{w} \cdot \mathbf{r} &= \max_{(x,p) \in \mathcal{X}} \sum_i w_i \sum_j x_{ij} \log \left(1 + \frac{p_{ij}e_{ij}}{x_{ij}}\right) \\
&= \text{(OPT)}
\end{align*}
\]

- Concave maximization problem
- Non-strictly concave: typically many local/global optimal allocations
Weighted Rate Maximization Problem

\[
\max_{r \in R(e)} w \cdot r = \max_{(x,p) \in X} \sum_i w_i \sum_j x_{ij} \log \left(1 + \frac{p_{ij} e_{ij}}{x_{ij}} \right)
\]

(OPT)

- Concave maximization problem
- Non-strictly concave: typically many local/global optimal allocations
- What is known: centralized optimal and (very good) heuristic algorithms [HSBA’07]
- What we will show: distributed optimal algorithm [This talk]
Centralized Optimal Algorithm [HSBA’07]

- Problem (OPT) is convex and satisfies Slater’s condition
 \[\Rightarrow \text{No duality gap.} \]
- Consider Lagrangian:

\[
L(x, p, \lambda, \mu) := \sum_i w_i \sum_j x_{ij} \log \left(1 + \frac{p_{ij}e_{ij}}{x_{ij}} \right) \\
+ \sum_i \lambda_i \left(P_i - \sum_j p_{ij} \right) + \sum_j \mu_j \left(1 - \sum_i x_{ij} \right).
\]

- Dual function:

\[
L(\lambda, \mu) = \max_{(x, p) \in \mathcal{X}} L(x, p, \lambda, \mu)
\]

- Optimal objective value to Problem (OPT):

\[
V^* = \min_{(\lambda, \mu) \geq 0} L(\lambda, \mu)
\]
A Dual-Based Centralized Algorithm [HSBA’07]

1. For fixed λ, analytically solve for $\mu(\lambda)$, $x(\lambda)$ and $p(\lambda)$.
2. Multi-dimensional subgradient search of optimal λ^*.
3. Find optimal x^* and p^* by solving a system of linear equations (multiple solutions).
A Dual-Based Centralized Algorithm [HSBA’07]

1. For fixed λ, analytically solve for $\mu(\lambda)$, $x(\lambda)$ and $p(\lambda)$.
2. Multi-dimensional subgradient search of optimal λ^*.
3. Find optimal x^* and p^* by solving a system of linear equations (multiple solutions).

Properties:
- **Centralized** computation (step 3)
- **Slow** convergence (step 2)
- **High** signaling overhead (steps 1, 2 and 3): all channel information and power constraints
Distributed Primal-Dual Algorithm

- Try to reach a saddle point of Lagrangian $L(x, p, \lambda, \mu)$:

$$
\dot{x}_{ij} = k_{ij}^{x} \cdot \partial L / \partial x_{ij} = k_{ij}^{x} \left(f_{ij}(x_{ij}, p_{ij}) - \mu_{j} \right)_{x_{ij}}^{+}, \text{(mobile)}
$$

$$
\dot{p}_{ij} = k_{ij}^{p} \cdot \partial L / \partial p_{ij} = k_{ij}^{p} \left(g_{ij}(x_{ij}, p_{ij}) - \lambda_{i} \right)_{p_{ij}}^{+}, \text{(mobile)}
$$

$$
\dot{\lambda}_{i} = k_{i}^{\lambda} \cdot \partial L / \partial \lambda_{i} = k_{i}^{\lambda} \left(\sum_{j} p_{ij} - P_{i} \right)_{\lambda_{i}}^{+}, \text{(mobile)}
$$

$$
\dot{\mu}_{j} = k_{j}^{\mu} \cdot \partial L / \partial \mu_{j} = k_{j}^{\mu} \left(\sum_{i} x_{ij} - 1 \right)_{\mu_{j}}^{+}, \text{(base station)}
$$
Distributed Primal-Dual Algorithm

Advantages:

- **Distributed** and simple updates by mobiles and base station
- Low communication overhead: user feedback x_{ij}’s and base station announces μ_j
Distributed Primal-Dual Algorithm

Advantages:
- Distributed and simple updates by mobiles and base station
- Low communication overhead: user feedback x_{ij}’s and base station announces μ_j

Challenge:
- How to achieve global convergence with non-strictly concave objective functions
 - Difficult in general
 - Example: multi-path routing [Voice’06]
Convergence Result: Part I

Theorem (Convergence to an Invariant Set)

- All trajectories of the primal-dual system converge to an invariant set V_0 **globally and asymptotically**.
- All **optimal** solutions of Problem (OPT) are contained in set V_0.
Convergence Result: Part I

Theorem (Convergence to an Invariant Set)

- All trajectories of the primal-dual system converge to an invariant set V_0 globally and asymptotically.
- All optimal solutions of Problem (OPT) are contained in set V_0.

Proof: constructing a proper Lyapunov function.

Question: Will set V_0 contain non-optimal solutions?
Convergence Result: Part II

Theorem (Convergence to a Global Optimal Solution)

All trajectories of the primal-dual system globally converge to optimal solutions of Problem (OPT) under properly chosen stepsizes.
Convergence Result: Part II

Theorem (Convergence to a Global Optimal Solution)

All trajectories of the primal-dual system globally converge to optimal solutions of Problem (OPT) under properly chosen stepsizes.

- Set V_0 only contains optimal solutions.
- Stepsize choice is easy: e.g., not all k_j^{μ}’s are the same.
- **Proof:**
 - Over set V_0, the nonlinear system reduces to a linear one.
 - The linear system in marginal stable.
 - Set V_0 contains only the optimal solution if (λ, μ) is completely observable from $B[x^T, p^T]^T$.
Relationship

Invariant set Optimal solutions

Complete Observability

Invariant set Optimal solutions
Simulation Set-up

- Single cell, \(M = 4 \) users.
- \(e_{ij} = (\text{fixed location-based term}) \times \text{(frequency selective fast fading)} \)
 - Fixed term = empirical distribution.
 - frequency selective term = block fading in time (\(2\text{msec} \) coh. time \(\approx 250\text{Hz} \) Doppler); standard ref. mobile delay spread (6 taps, 1 \(\mu\text{sec} \)).
- 5 MHz BW, 512 carriers.
- Adjacent channelization, 8 carriers/subchannel.
- Resource allocation over 20 OFDM symbols.
- Randomly generated weights in \([0, 1]\).
Convergence of Primal and Dual Variables

Dual variables λ

Dual variables μ

Total power allocation of all users

Total channel allocation of all channels

J. Huang (CUHK)
Convergence of Total Weighted Rate

Achieve 90% within 500 iterations
Conclusions

- **Topic**: optimal resource allocation for uplink OFDM systems

- **Algorithm**: Primal-Dual algorithm

- **Properties**
 - Distributed and simple updates
 - Low communication overhead per iteration

- **Future Work**:
 - Convergence with delay and asynchronous updates
 - Faster convergence
Contact

www.ie.cuhk.edu.hk/~jwhuang

jwhuang@ie.cuhk.edu.hk