

Bandwidth Allocation Games under Budget and Access Constraints

Amol Sahasrabudhe, Koushik Kar
Rensselaer Polytechnic Institute

Outline

- **Introduction**
 - Motivation and System Model
- Bandwidth Allocation under Budget Constraints
 - Existence and Uniqueness of Nash Equilibrium
- Bandwidth Allocation under Additional Access Constraints
 - Asymptotic Fairness of the Nash Equilibrium
- Open Issues

Motivation

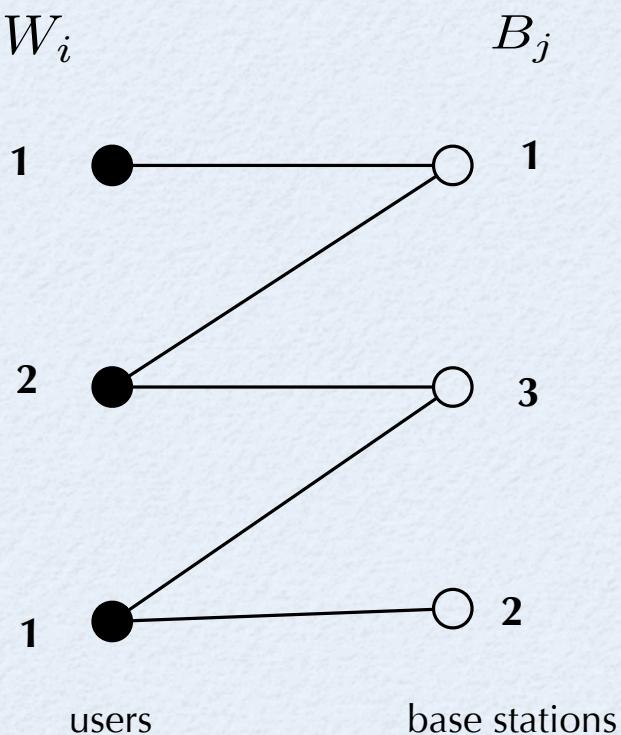
- System Model:
 - Users (*b/w consumers*) associated with individual budgets
 - Base-stations (*b/w providers*) own (disjoint) parts of spectrum
 - A user may not have access to all base-stations, and vice versa
 - Users split their wealth across base-stations (bids)
 - Base-stations split their bandwidth based on user bids
- Question:
 - What if users are *greedy* and base-stations are *fair*?
 - Existence, uniqueness and *fairness* properties of the Nash Equilibrium (NE)

Related Work

- Utility (profit) maximization game
 - Lot of interest in recent years
 - Maheswaran and Basar '03 '04
 - Johari and Tsitisklis
 - Sanghvi and Hajek '04, Yang and Hajek '07 *etc.*
- Budget constrained version
 - Zhang '05, Feldman, Lai and Zhang '05

System Model

- N : set of users; M : set of base-stations
- User i has a budget (wealth) of W_i (*budget constraints*)
- Base-station (BS) j owns a total b/w of B_j
- A BS j is accessible to a subset Γ_j of all users (*access constraints*)



- Introduction
 - Motivation and System Model
- **Bandwidth Allocation under Budget Constraints**
 - Existence and Uniqueness of Nash Equilibrium
- Bandwidth Allocation under Additional Access Constraints
 - Asymptotic Fairness of the Nash Equilibrium
- Open Issues

A Greedy User - Fair BS Game

- Game Assumptions:
 - A user i bids w_{ij} on BS j
 - Each BS splits its bandwidth in proportion to the user bids (*fair BSs*)
 - Users choose the bids so as to maximize their overall bandwidth (*price-anticipating, greedy users*)
- Game definition: (*No access constraints*)

Game1 : (user i)

$$\max_{\mathbf{w}_i} \sum_{j \in M} B_j \frac{w_{ij}}{w_{ij} + \sum_{i' \in N \setminus \{i\}} w_{i'j}}$$

(Also: A user with zero bid gets zero b/w at a BS,
irrespective of the bids of other users)

subject to

$$\sum_{j \in M} w_{ij} \leq W_i,$$
$$w_{ij} \geq 0, \quad \forall j \in M.$$

NE Properties (1/3)

- Questions of Interest:
 - Existence of the NE (*Yes!*)
 - Uniqueness of the NE (*Yes!*)
 - Can the NE be expressed in closed form (*Yes!*)
 - Is the NE “fair”? (*Yes!*)
- Existence and Uniqueness:
 - Assume that none of the w_{ij} are zero
 - Then the NE can be explicitly calculated as

$$w_{ij}^* = \frac{B_j W_i}{\sum_{j' \in M} B_{j'}}$$

- Therefore NE is unique in this case

NE Properties (2/3)

- Question: How do we know $w_{ij} > 0 \quad \forall i, j$
- Proof Outline:
 - Use contradiction: assume $\exists w_{kT} = 0$
 - Form a reduced game $\{N, M - 1, W_{T-}, B_{T-}\}$ from the original game $\{N, M, W, B\}$ by removing BS T and bids to that BS
 - Show that there is a NE to the reduced game (easily derived from the NE of the original game) with some zero bid
 - Keep on iterating until we are left with one BS: it cannot have any zero bid at NE (contradiction)

NE Properties (3/3)

- Note: $w_{ij}^* = \frac{B_j W_i}{\sum_{j' \in M} B_{j'}}$ implies:
 - b/w obtained by user i is
$$b_i^* = W_i \left(\frac{\sum_{j' \in M} B_j}{\sum_{i' \in N} W_i'} \right)$$
 - Therefore, each user obtains b/w in proportion to its wealth
 - The NE leads to fair sharing of b/w among users (weighted max-min / proportional fairness)

- Introduction
 - Motivation and System Model
- Bandwidth Allocation under Budget Constraints
 - Existence and Uniqueness of Nash Equilibrium
- Bandwidth Allocation under Additional Access Constraints
 - Asymptotic Fairness of the Nash Equilibrium
- Open Issues

Game Generalization

- Game Assumptions:
 - A user i bids w_{ij} on BS j
 - Fair BSs
 - Price anticipating greedy users
 - A user can only obtain b/w from BSs it has access to
- Game definition:

Game3 : (user i)

$$\max_{\mathbf{w}_i} \sum_{j \in M} U_{ij} \left(B_j \frac{w_{ij}}{w_{ij} + \sum_{i' \in N \setminus \{i\}} w_{i'j}} \right),$$

subject to

$$\sum_{j \in M} w_{ij} \leq W_i,$$

$$w_{ij} \geq 0.$$

(Also: A user with zero bid gets zero b/w at a BS, irrespective of the bids of other users)

$$U_{ij}(x) = \begin{cases} x & \text{if } i \in \Gamma_j, \\ 0 & \text{otherwise.} \end{cases}$$

$$|\Gamma_j| \geq 2$$

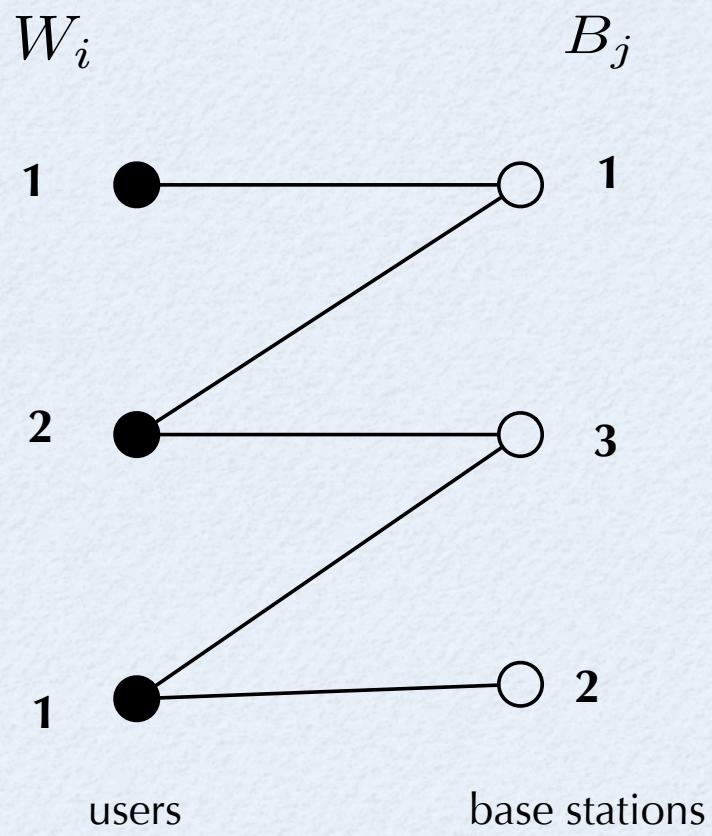
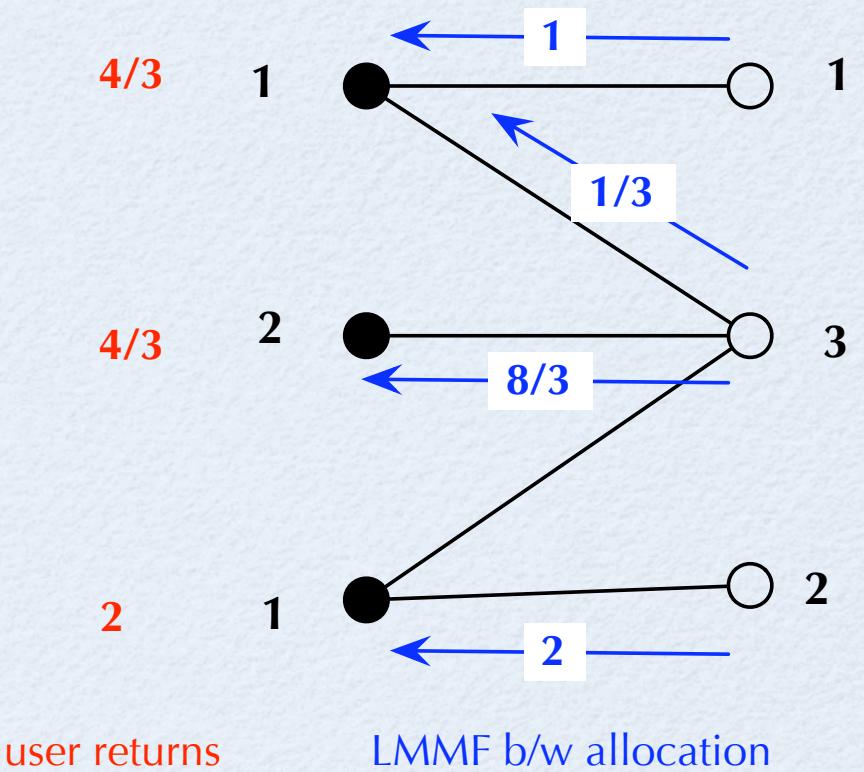
NE Properties

- Questions of Interest:
 - Existence of the NE (*Yes!* - shown by Zhang '05)
 - Uniqueness of the NE (*Remains open*)
 - Can the NE be expressed in closed form (*Appears unlikely*)
 - Is the NE “fair”? (*Yes, but only asymptotically!*)
- Fairness:
 - How do you measure fairness in this case?
 - It may not be possible to attain the same b_i^*/W_i across all users in this case (due to access constraints)
 - How about (*lexicographic*) *max-min fairness* (LMMF)?

LMMF

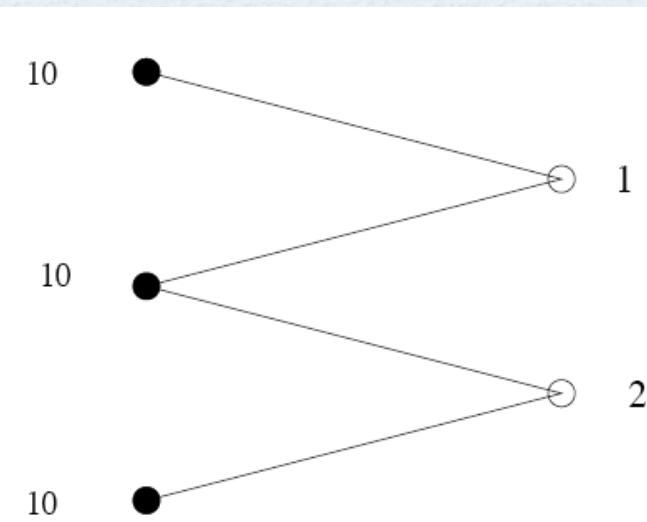
- Maximize the “user returns” b_i^*/W_i *lexicographically*
 - Maximize the minimum user return, then maximize the second minimum user return (subject to the minimum user return being the maximum), and so on
 - A user return cannot be increased further without decreasing a user return of equal or lesser value
 - “Ideal” fairness measure
- Can be considered as the *system optimum*
 - Property of the graph (users, BSs and accessibility constraints), the W_i and the B_j
 - Not related to the game (no notion of bids at all)
 - Can be computed by solving a sequence of flow problems

LMMF: Example

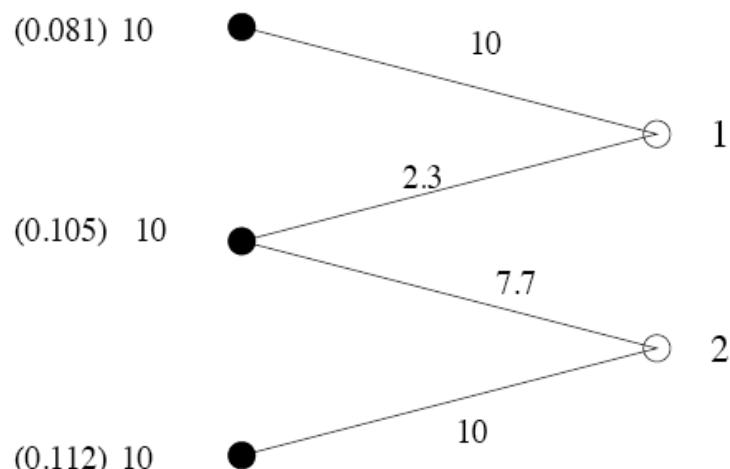


LMMF vs NE

- In general, NE may not be LMMF
 - NE can be very unfair in general
- Example:



(a) The accessibility graph



(b) Nash Equilibrium

LMMF returns for this network is $(0.1, 0.1, 0.1)$

Asymptotic Case

- What happens if number of users grows w/o bound?
- Assumptions:
 - Number of users for *each* BS grows as $O(|N|)$,
i.e., $aN \leq \Gamma_j$ for some positive constant a
 - Bandwidths of BSs (B_j) grow as $O(N)$
 - User wealths (W_i) are positive and bounded
- LMMF vs NE:
 - User returns at NE are can be made *arbitrarily close* to their values at LMMF by making N sufficiently large

Asymptotic Fairness of NE

- Given any $\xi > 0$, $\exists n_0$ such that $\forall |N| > n_0$,
$$|R_i^* - R_i^{LMMF}| \leq \xi \quad \forall i$$
 - for all networks (graphs) $G(|N|)$ that satisfy the earlier (asymptotic) assumptions
 - R_i^* : return of user i at NE (b_i^*/W_i)
 - R_i^{LMMF} : return of user i optimality (LMMF)

Basic Intuition (1/2)

- If a user i can access two BSs, j_1 and j_2

$$\frac{\partial}{\partial w_{ij_1}} \left(\frac{w_{ij_1} B_{j_1}}{w_{ij_1} + \sum_{i' \in N \setminus i' \neq i} w_{i'j_1}} \right) = \frac{\partial}{\partial w_{ij_2}} \left(\frac{w_{ij_2} B_{j_2}}{w_{ij_2} + \sum_{i' \in N \setminus i' \neq i} w_{i'j_2}} \right)$$

$$\frac{B_{j_1} \sum_{i' \in I, i' \neq i} w_{i'j_1}}{(\sum_{i' \in I} w_{i'j_1})^2} = \frac{B_{j_2} \sum_{i' \in I, i' \neq i} w_{i'j_2}}{(\sum_{i' \in I} w_{i'j_2})^2}$$

$$\frac{B_{j_1} \sum_{i' \in I} w_{i'j_1} - w_{ij_1}}{(\sum_{i' \in I} w_{i'j_1})^2} = \frac{B_{j_2} \sum_{i' \in I} w_{i'j_2} - w_{ij_2}}{(\sum_{i' \in I} w_{i'j_2})^2}$$

For large $|N|$:

$$\frac{B_{j_1}}{\sum_{i' \in I} w_{i'j_1}} \approx \frac{B_{j_2}}{\sum_{i' \in I} w_{i'j_2}} \approx \alpha \text{ (say)}$$

Basic Intuition (2/2)

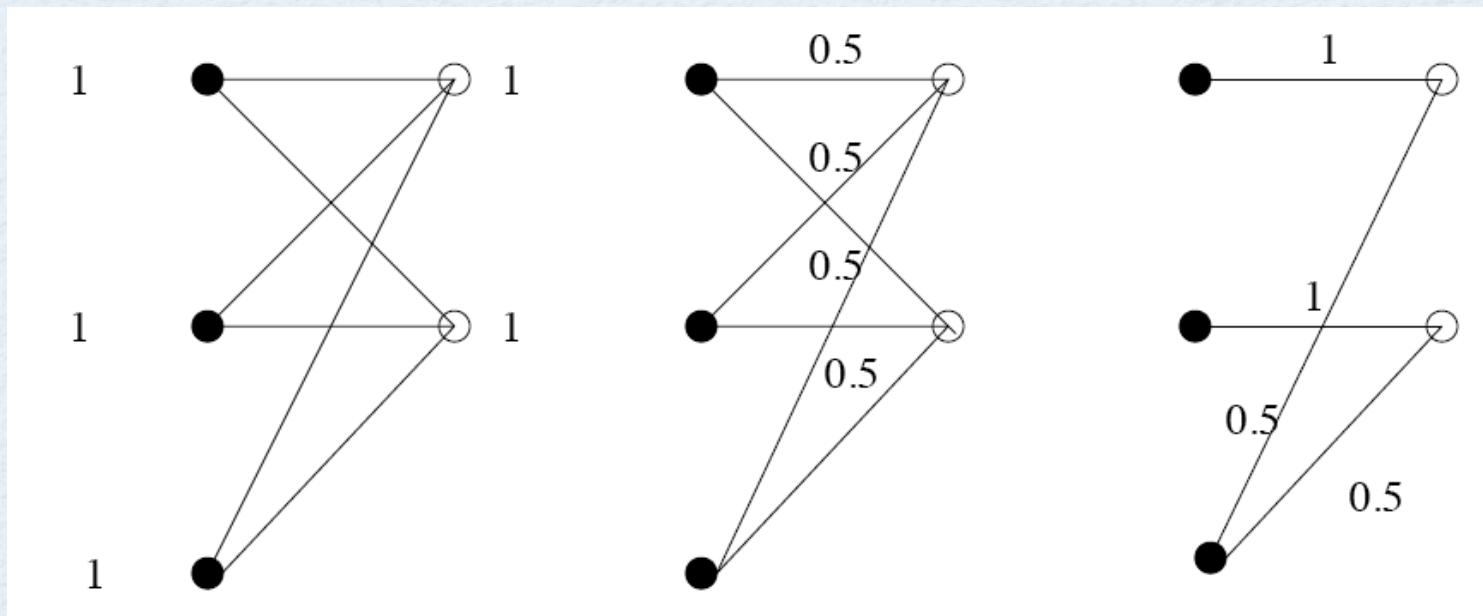
$$\begin{aligned} b_i^* &= \sum_{j:i \in \Gamma_j} w_{ij} \frac{B_j}{\sum_{i' \in I} w_{i'j}} \\ &\approx \alpha \sum_{j:i \in \Gamma_j} w_{ij} \\ &= \alpha W_i \end{aligned}$$

Moral of the story: *User greed is good, as long as the providers are fair*

- Introduction
 - Motivation and System Model
- Bandwidth Allocation under Budget Constraints
 - Existence and Uniqueness of Nash Equilibrium
- Bandwidth Allocation under Additional Access Constraints
 - Asymptotic Fairness of the Nash Equilibrium
- Open Issues

Open Issues

- With access constraints, is the NE unique?
- Note that LMMF b/w allocation may not be unique
 - The bids that result in LMMF (assuming fair BSs) may also be non-unique



Thank You!