A Lower-Bound on the Number of Rankings Required in Recommender Systems Using Collaborativ Filtering

Peter Marbach
University of Toronto
ENS/INRIA Paris, France

Overview

- Motivation
- Problem Formulation
- Results

Netflix:

- Online Video Rental
- Users Rank Movies: *,**,...,*****
- System Provides Recommendations (Ranking Predictions)

Netflix Prize

- Improve Netflix Prediction System by 10%
- Prize: 1 Million Dollar
- Data Set of User Rankings

Training Set Data Set

Training Set

- 480 000 Users
- 30.000 Movies
- 100,000,000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
 Data Set
- Training Set
 - 480.000 Users
 - 30.000 Movies
 - 100.000.000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
 Data Set
- Training Set
 - 480.000 Users
 - 30.000 Movies
 - 100.000.000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Data Set
- Training Set
 - 480.000 Users
 - 30.000 Movies
 - 100.000.000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Se
 - Data Set
- Training Set
 - 480,000 Users
 - 30.000 Movies
 - 100.000.000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
- Training Set
 - 480.000 Users
 - 30.000 Movies
 - 100.000.000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
- Training Set
 - 480,000 Users
 - 30.000 Movies
 - 100.000.000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
 - Data Set
- Training Set
 - 480,000 Users
 - 30.000 Movies
 - 100.000.000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
 - Data Set
- Training Set
 - 480,000 Users
 - 30.000 Movies
 - 100.000.000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
 - Data Set
- Training Set
 - 480,000 Users
 - 30,000 Movies
 - 100.000.000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
 - Data Set
- Training Set
 - 480,000 Users
 - 30.000 Movies
 - 100,000,000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
 - Data Set
- Training Set
 - 480,000 Users
 - 30.000 Movies
 - 100,000,000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
 - Data Set
- Training Set
 - 480,000 Users
 - 30,000 Movies
 - 100,000,000 Rankings

- Netflix:
 - Online Video Rental
 - Users Rank Movies: *,**,...,*****
 - System Provides Recommendations (Ranking Predictions)
- Netflix Prize
 - Improve Netflix Prediction System by 10%
 - Prize: 1 Million Dollar
 - Data Set of User Rankings
 - Training Set
 - Data Set
- Training Set
 - 480,000 Users
 - 30,000 Movies
 - 100,000,000 Rankings

- 1 Million Dollar
- Interesting Questions
 - Is it possible to improve by 10%?
 - Is it a difficult problem?
 - How many rankings are needed to make "good" predictions
 - o ..
- Important Problem: Collaborative Filtering
- Large Data Set

- 1 Million Dollar
- Interesting Questions
 - Is it possible to improve by 10%?
 - Is it a difficult problem?
 - How many rankings are needed to make "good" predictions
 - ...
- Important Problem: Collaborative Filtering
- Large Data Set

- 1 Million Dollar
- Interesting Questions
 - Is it possible to improve by 10%?
 - Is it a difficult problem?
 - How many rankings are needed to make "good" predictions
 - ...
- Important Problem: Collaborative Filtering
- Large Data Set

- 1 Million Dollar
- Interesting Questions
 - Is it possible to improve by 10%?
 - Is it a difficult problem?
 - How many rankings are needed to make "good" predictions...
- Important Problem: Collaborative Filtering
- Large Data Set

- 1 Million Dollar
- Interesting Questions
 - Is it possible to improve by 10%?
 - Is it a difficult problem?
 - How many rankings are needed to make "good" predictions
 - ...
- Important Problem: Collaborative Filtering
- Large Data Set

- 1 Million Dollar
- Interesting Questions
 - Is it possible to improve by 10%?
 - Is it a difficult problem?
 - How many rankings are needed to make "good" predictions
 - ...
- Important Problem: Collaborative Filtering
- Large Data Set

- 1 Million Dollar
- Interesting Questions
 - Is it possible to improve by 10%?
 - Is it a difficult problem?
 - How many rankings are needed to make "good" predictions
 - ...
- Important Problem: Collaborative Filtering
- Large Data Set

- 1 Million Dollar
- Interesting Questions
 - Is it possible to improve by 10%?
 - Is it a difficult problem?
 - How many rankings are needed to make "good" predictions
 - ...
- Important Problem: Collaborative Filtering
- Large Data Set

Goal

- Interesting Problems/Models
- Possible to Find Answers
- Many Interesting/Important Open Problems

Goal

- Interesting Problems/Models
- Possible to Find Answers
- Many Interesting/Important Open Problems

Goal

- Interesting Problems/Models
- Possible to Find Answers
- Many Interesting/Important Open Problems

- N users
- I_N items to be ranked
- Each user ranks m_N items (chosen at random)
- Ranking: [0, 1]
- Correlation
 - C classes, c = 1,.... C
 - Ranking vector: $r_c = (r_c(1), ..., r_c(I_N))$
- Ranking vectors can "overlap"

- N users
- I_N items to be ranked
- Each user ranks m_N items (chosen at random)
- Ranking: [0, 1]
- Correlation
 - C classes. c = 1..... C
 - Ranking vector: $r_c = (r_c(1), ..., r_c(I_N))$
- Ranking vectors can "overlap"

- N users
- I_N items to be ranked
- Each user ranks m_N items (chosen at random)
- Ranking: [0, 1]
- Correlation
 - C classes. c = 1..... C
 - Ranking vector: $r_c = (r_c(1), ..., r_c(I_N))$
- Ranking vectors can "overlap"

- N users
- I_N items to be ranked
- Each user ranks m_N items (chosen at random)
- Ranking: [0, 1]
- Correlation
 - C classes. c = 1..... C
 - Ranking vector: $r_c = (r_c(1), ..., r_c(I_N))$
- Ranking vectors can "overlap"

- N users
- I_N items to be ranked
- Each user ranks m_N items (chosen at random)
- Ranking: [0, 1]
- Correlation
 - C classes, c = 1, ..., C• Ranking vector: $r_c = (r_c(1), ..., r_c(I_N))$
- Ranking vectors can "overlap"

- N users
- I_N items to be ranked
- Each user ranks m_N items (chosen at random)
- Ranking: [0, 1]
- Correlation
 - C classes, c = 1, ..., C
 - Ranking vector: $r_c = (r_c(1), ..., r_c(I_N))$
- Ranking vectors can "overlap"

- N users
- I_N items to be ranked
- Each user ranks m_N items (chosen at random)
- Ranking: [0,1]
- Correlation
 - C classes, c = 1, ..., C
 - Ranking vector: $r_c = (r_c(1), ..., r_c(I_N))$
- Ranking vectors can "overlap"

- N users
- I_N items to be ranked
- Each user ranks m_N items (chosen at random)
- Ranking: [0, 1]
- Correlation
 - C classes, c = 1, ..., C
 - Ranking vector: $r_c = (r_c(1), ..., r_c(I_N))$
- Ranking vectors can "overlap"

- N users
- I_N items to be ranked
- Each user ranks m_N items (chosen at random)
- Ranking: [0, 1]
- Correlation
 - *C* classes, *c* = 1, ..., *C*
 - Ranking vector: $r_c = (r_c(1), ..., r_c(I_N))$
- Ranking vectors can "overlap"

- "What is the minimal number of m_N of rankings (as a function of N and I_N) required in order to correctly associate all users with their corresponding class, in the limit as N approaches infinity?"
- Trivial $m_N = I_N$
- Impossible if $m_N = 1$
- Threshold?
- Lower-bound on m_N

- "What is the minimal number of m_N of rankings (as a function of N and I_N) required in order to correctly associate all users with their corresponding class, in the limit as N approaches infinity?"
- Trivial $m_N = I_N$
- Impossible if $m_N = 1$
- Threshold?
- Lower-bound on m_N

- "What is the minimal number of m_N of rankings (as a function of N and I_N) required in order to correctly associate all users with their corresponding class, in the limit as N approaches infinity?"
- Trivial $m_N = I_N$
- Impossible if $m_N = 1$
- Threshold?
- Lower-bound on m_N

- "What is the minimal number of m_N of rankings (as a function of N and I_N) required in order to correctly associate all users with their corresponding class, in the limit as N approaches infinity?"
- Trivial $m_N = I_N$
- Impossible if $m_N = 1$
- Threshold?
- Lower-bound on m_N

- "What is the minimal number of m_N of rankings (as a function of N and I_N) required in order to correctly associate all users with their corresponding class, in the limit as N approaches infinity?"
- Trivial $m_N = I_N$
- Impossible if $m_N = 1$
- Threshold?
- Lower-bound on m_N

- "What is the minimal number of m_N of rankings (as a function of N and I_N) required in order to correctly associate all users with their corresponding class, in the limit as N approaches infinity?"
- Trivial $m_N = I_N$
- Impossible if $m_N = 1$
- Threshold?
- Lower-bound on m_N

Users **Items**

• "Edge does not mean same class!"

• "Edge does not mean same class!"

- Complete Separation: $r_{c'}(i) \neq r_{c''}(i), i = 1, ..., I_N$
- "Edge does mean same class!"
- "Correct Classification" means "Full Connectivity"
- Is "complete separation" too strong an assumption?

- Complete Separation: $r_{c'}(i) \neq r_{c''}(i), i = 1, ..., I_N$
- "Edge does mean same class!"
- "Correct Classification" means "Full Connectivity"
- Is "complete separation" too strong an assumption?

- Complete Separation: $r_{c'}(i) \neq r_{c''}(i), i = 1, ..., I_N$
- "Edge does mean same class!"
- "Correct Classification" means "Full Connectivity"
- Is "complete separation" too strong an assumption?

- Complete Separation: $r_{c'}(i) \neq r_{c''}(i), i = 1, ..., I_N$
- "Edge does mean same class!"
- "Correct Classification" means "Full Connectivity"
- Is "complete separation" too strong an assumption?

- Complete Separation: $r_{c'}(i) \neq r_{c''}(i), i = 1, ..., I_N$
- "Edge does mean same class!"
- "Correct Classification" means "Full Connectivity"
- Is "complete separation" too strong an assumption?

- Notation
 - Fixed class of
 - N
- Probability that an edge exists between two users

$$p(I_N, m_N) \approx \frac{m_N^2}{I_N} = \frac{1}{I_N} \cdot m_N \cdot m_N$$

- Notation
 - Fixed class c
 - N
- Probability that an edge exists between two users

$$p(I_N, m_N) \approx \frac{m_N^2}{I_N} = \frac{1}{I_N} \cdot m_N \cdot m_N$$

- Notation
 - Fixed class c
 - N
- Probability that an edge exists between two users

$$p(I_N, m_N) \approx \frac{m_N^2}{I_N} = \frac{1}{I_N} \cdot m_N \cdot m_N$$

- Notation
 - Fixed class c
 - N
- Probability that an edge exists between two users

$$p(I_N, m_N) \approx \frac{m_N^2}{I_N} = \frac{1}{I_N} \cdot m_N \cdot m_N$$

- Notation
 - Fixed class c
 - N
- Probability that an edge exists between two users

$$p(I_N, m_N) \approx \frac{m_N^2}{I_N} = \frac{1}{I_N} \cdot m_N \cdot m_N$$

- P_N: Probability of Full Connectivity
- Note

$$\frac{Nm_N^2}{I_N} = N \frac{m_N^2}{I_N} \approx Np(I_N, m_N)$$

If

$$\frac{Nm_N^2}{I_N} = \omega(\log N)$$

then $\lim_{N\to\infty} P_N = 1$,

if

$$\frac{Nm_N^2}{I_N} = \log N + a + o(1)$$

then $\lim_{N\to\infty} P_N < e^{-e^{-a}}$.

P_N: Probability of Full Connectivity

$$\frac{Nm_N^2}{I_N}$$

Note

$$\frac{Nm_N^2}{I_N} = N \frac{m_N^2}{I_N} \approx Np(I_N, m_N)$$

If

$$\frac{Nm_N^2}{I_N} = \omega(\log N)$$

then $\lim_{N\to\infty} P_N = 1$

if

$$\frac{Nm_N^2}{I_N} = \log N + a + o(1)$$

- P_N: Probability of Full Connectivity
- Note

$$rac{Nm_N^2}{I_N}=Nrac{m_N^2}{I_N}pprox Np(I_N,m_N)$$

If

$$\frac{Nm_N^2}{I_M} = \omega(\log N)$$

then $\lim_{N\to\infty} P_N = 1$

if

$$\frac{Nm_N^2}{I_N} = \log N + a + o(1)$$

then $\lim_{N\to\infty} P_N < e^{-e^{-a}}$.

- P_N: Probability of Full Connectivity
- Note

$$rac{Nm_N^2}{I_N} = Nrac{m_N^2}{I_N} pprox Np(I_N, m_N)$$

If

$$\frac{Nm_N^2}{I_N} = \omega(\log N)$$

then $\lim_{N\to\infty} P_N = 1$,

if

$$\frac{Nm_N^2}{I_N} = \log N + a + o(1)$$

then $\lim_{N\to\infty} P_N < e^{-e^{-a}}$.

- P_N: Probability of Full Connectivity
- Note

$$\frac{Nm_N^2}{I_N} = N \frac{m_N^2}{I_N} \approx Np(I_N, m_N)$$

If

$$\frac{Nm_N^2}{I_N} = \omega(\log N)$$

then $\lim_{N\to\infty} P_N = 1$,

if

$$\frac{Nm_N^2}{I_N} = \log N + a + o(1)$$

then $\lim_{N\to\infty} P_N \leq e^{-e^{-a}}$.

Analysis

Many-User Case

$$\lim_{N\to\infty}\frac{N}{I_N\log N}=\infty$$

Balanced Case

$$\lim_{N\to\infty}\frac{N}{I_N}=b$$

Many-Item Case

$$\lim_{N\to\infty}\frac{Nm_N}{I_N}=0$$

Analysis

Many-User Case

$$\lim_{N\to\infty}\frac{N}{I_N\log N}=\infty$$

Balanced Case

$$\lim_{N\to\infty}\frac{N}{I_N}=b$$

Many-Item Case

$$\lim_{N\to\infty}\frac{Nm_N}{I_N}=0$$

Analysis

Many-User Case

$$\lim_{N\to\infty}\frac{N}{I_N\log N}=\infty$$

Balanced Case

$$\lim_{N\to\infty}\frac{N}{I_N}=b$$

Many-Item Case

$$\lim_{N\to\infty}\frac{Nm_N}{I_N}=0$$

Back to Netflix

Lower-Bound

$$\frac{Nm_N^2}{I_N} \approx \log N$$

- Netflix
 - N = 480,000

 - $m \approx 200$
- For Netflix

$$\frac{Nm^2}{I} \approx 1.3N$$

Back to Netflix

Lower-Bound

$$\frac{Nm_N^2}{I_N} \approx \log N$$

- Netflix
 - N = 480,000
 - *I* = 30,000
 - $m \approx 200$
- For Netflix

$$\frac{Nm^2}{I} \approx 1.3N$$

Back to Netflix

Lower-Bound

$$\frac{Nm_N^2}{I_N} \approx \log N$$

- Netflix
 - N = 480,000
 - *I* = 30,000
 - *m* ≈ 200
- For Netflix

$$\frac{Nm^2}{I} \approx 1.3N$$

- Collaborative Filtering
- Random Graph Model
- Lower-Bound
- Algorithm?
- Classify correctly a large fraction of the users
- ...

- Collaborative Filtering
- Random Graph Model
- Lower-Bound
- Algorithm?
- Classify correctly a large fraction of the users
- ...

- Collaborative Filtering
- Random Graph Model
- Lower-Bound
- Algorithm?
- Classify correctly a large fraction of the users
- ...

- Collaborative Filtering
- Random Graph Model
- Lower-Bound
- Algorithm?
- Classify correctly a large fraction of the users
- ..

- Collaborative Filtering
- Random Graph Model
- Lower-Bound
- Algorithm?
- Classify correctly a large fraction of the users
- ...

- Collaborative Filtering
- Random Graph Model
- Lower-Bound
- Algorithm?
- Classify correctly a large fraction of the users
- ..

Thank You

Thank You!