



## Optimal Path Planning for Mobile Backbone Networks

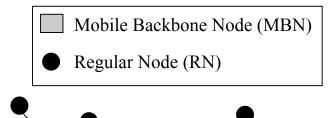
**Anand Srinivas and Eytan Modiano Massachusetts Institute of Technology** 

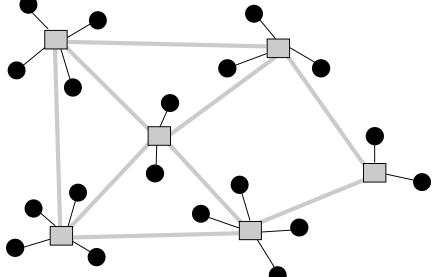


### **Mobile Backbone Architecture**



- Use dedicated communication nodes to maintain network connectivity
  - The MBNs primary purpose is to facilitate communication
  - The MBN's form a backbone over which communications takes place
  - MBN nodes are moved about to maintain connectivity requirements
- Regular nodes (RNs) have unconstrained mobility dictated by their mission





- Technical challenges:
  - Number and location of MBN's to provide connectivity for RN's
  - Algorithms for reconfiguring the network as the RN's move

Related work: Baker et. al, 1981; Gerla, et. al. 2003; Rubin et. al. 2002



### **Outline**



- Introduction
- MBN placement under disk cover model
  - Network connectivity
- MBN placement under communications model
  - Maximizing network throughput
- MBN trajectory planning
  - Time horizon throughput maximization
  - Energy efficient trajectory



## MBN Placement Problem Disk connectivity model

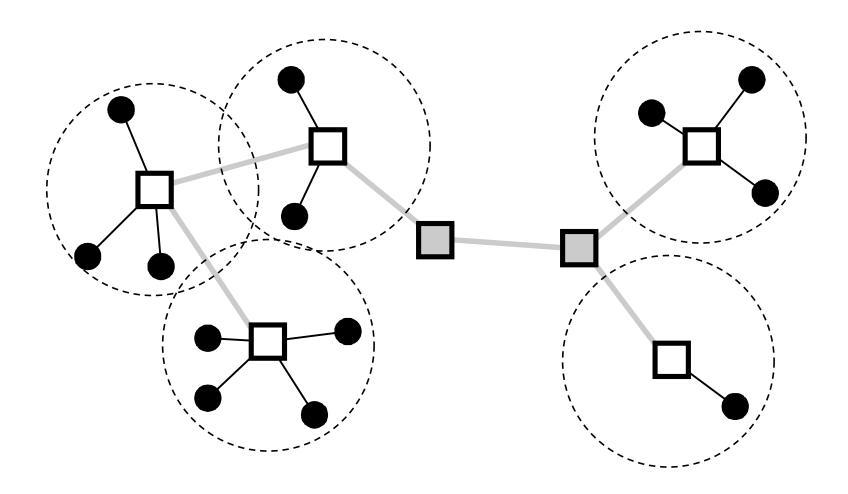


- Assume disk communications model
  - RN *i* can *communicate* with node  $j \Leftrightarrow d(i,j) \le r$
  - MBN *i* can *communicate* with MBN  $j \Leftrightarrow d(i,j) ≤ R$
- Given a set of RNs in the plane, place the minimum number of MBNs such that:
  - (a) Every RN can communicate with at least 1 MBN
  - (b) The network formed by the MBNs is connected
- Results
  - Problem can be decomposed into 2 sub-problems:
    - Geometric Disk Cover (GDC) Problem
    - Steiner Tree Problem w/ Minimum Number of Steiner Pts. (STP-MSP)
  - Developed distributed algorithms for GDC and STP-MSP



## **Decomposition Illustration**







## MBN Placement Problem (Disk model)



### Decomposition Lemma:

- Applying α- and β-approximation algorithms for the GDC and STP-MSP respectively, yields an  $(\alpha+\beta)$ -approximation algorithm for the overall problem
- Implication 1: even optimal solution to both GDC and MTP-MSP yields a 2approximation for overall problem
- Implication 2: decomposition yields a 3.5-approximation algorithm using known (centralized) solutions for GDC and STP-MSP

### Distributed algorithms

- Developed distributed approximation algorithms for GDC with mobile RNs by dividing plane into "strips"
- Developed a distributed algorithm for STP-MSP using discretization
- Decomposition approach is sub-optimal but amenable to distributed implementation

### Papers

- A. Srinivas, G. Zussman and E. Modiano, "Mobile Backbone Networks Construction and Maintenance," ACM Mobihoc, May, 2006.
- A. Srinivas, G. Zussman and E. Modiano, "Mobile Disk Cover A Building Block for Mobile Backbone Networks," *IEEE Allerton*, Sept., 2006.



### **Outline**



- Introduction
- MBN placement under disk cover model
  - Network connectivity
- MBN placement under communications model
  - Maximizing network throughput
- MBN trajectory planning
  - Time horizon throughput maximization



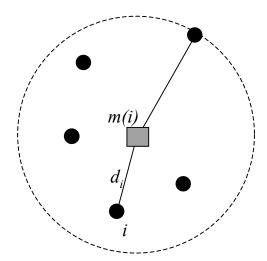
### **MBN Placement Problem Revisited**



- Issues with previous formulation
  - Implicitly assumes arbitrary number of available MBNs
  - Simplistic disk communications model
- Alternative formulation
  - Fixed number of MBNs, K
  - Assume a more general communications model:
    - Throughput of RN i is a decreasing function F(), of

 $d_i$  - distance from its assigned MBN m(i) (propagation effects)

 $P_{m(i)}$  - number of RNs assigned to the same MBN (interference effects)





## **Examples of Communication Model**



- Slotted ALOHA (no capture)
  - All RNs transmit with equal probability
  - Throughput of RN i is probability only i transmits, multiplied by a distance penalty,

$$F(\ ) = \left(\frac{1}{P_{m(i)}}\right) \left(1 - \frac{1}{P_{m(i)}}\right)^{P_{m(i)}-1} \left(\frac{1}{d_i^{\alpha}}\right) \approx \frac{1}{e \cdot P_{m(i)} \cdot d_i^{\alpha}}$$



- Received power is equalized at m(i)
- Throughput of RN i is related to SINR at m(i),

$$F(\ ) = \frac{(1/R_{m(i)}^{\alpha})}{(1/R_{m(i)}^{\alpha}) \cdot (P_{m(i)} - 1) + \eta} = \frac{1}{(P_{m(i)} - 1) + \eta \cdot R_{m(i)}^{\alpha}}$$



### **MBN Placement Problem Revisited**



- Maximum Fair Placement and Assignment (MFPA) Problem:
  - Given N RNs, place K MBNs and assign each RN to exactly one MBN such that,

$$T_{MFPA} = \min_{i} \left\{ F(d_i, P_{m(i)}) \right\}$$
 is maximized

- Maximum Throughput Placement and Assignment (MTPA) Problem
  - Given N RNs, place K MBNs and assign each RN to exactly one MBN such that,

$$T_{MTPA} = \sum_{i} F(d_{i}, P_{m(i)})$$
 is maximized

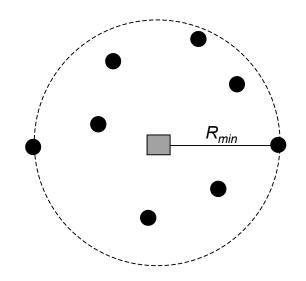
- Note:
  - Above formulations do not consider MBN connectivity
  - Above formulations include a non-trivial assignment component



## Simple example: 1 MBN and N RNs



- MFPA cost function, i.e.  $T = F(R_{m_1}, P_{m_1})$ 
  - $R_{ml}$  = radius of MBN
  - $P_{m1}$  = number of RN's assigned to the MBN
  - Note: No assignment component in this case
  - Place MBN to minimize R<sub>m1</sub>
    - Optimal MBN placement at "1-center" of the RNs (O(nlog n) computation)



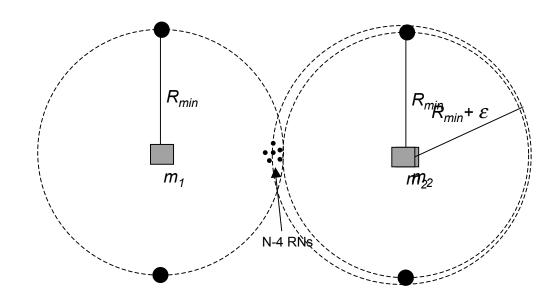
Optimal Throughput is  $T_{1-cen} = F(R_{min}, N)$ 



## Non-trivial example: 2 MBNs and N RNs



- MFPA cost function, i.e.,  $T = \min_{i} \{F(R_{m(i)}, P_{m(i)})\}$
- Assignment problem non-trivial
- 2-center solution no longer optimal



Optarca Statution (e.g. statution)

 $T_{2pten} = F(R_{min} + \varepsilon_N N/2)$ 

- Note:
  - Infinite number of possible MBN placements
  - Given a placement, there are 2<sup>N</sup> different RN to MBN assignments



## **Optimal Solution for K-MFPA**



### Placement of K MBNs to maximize min throughput

#### Basic idea

- Show that restricting MBN placements to a finite set of locations preserves optimality
- Show that given an MBN placement, can efficiently solve RN assignment sub-problem

#### Theorem 1:

- Given optimal RN to MBN assignments P<sub>1</sub>,...,P<sub>k</sub>
- Placing MBNs at 1-center locations 1-Center( $P_1$ ), ...1-Center ( $P_k$ ) is optimal

#### Theorem 2:

- The 1-center location of any subset of N RNs lies among at most N<sup>3</sup> candidate locations, which can be easily enumerated
  - At most  $\binom{N^3}{K}$  possible placements of K MBNs
- For each placement, need a way optimally assign RNs to MBNs



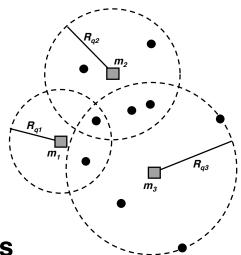
## **Assignment Sub-problem**



Given K placed MBNs at "1-Center locations" q<sub>1</sub>,...,q<sub>K</sub>, assign every RN to exactly 1 MBN to maximize

$$T = \min_{i} \left\{ F(R_{m(i)}, P_{m(i)}) \right\}$$

- Note: there are K<sup>N</sup> possible assignments
- Key observation: each candidate location q has an associated radius R<sub>q</sub> (given by set of nodes that define this candidate location)
  - Only RNs within R<sub>q</sub> of the MBN placed at location q can be assigned to it
  - An RN may still be covered by multiple MBNs
  - Defines a set of "valid assignments", i.e.,  $z_{ij} = 1$ , iff RN i can be assigned to MBN  $m_i$





# Mathematical formulation for the assignment problem



Mathematical Formulation of MFPA Assignment Sub-problem:

$$\max \min_{j \in M} F\left(R_{j}, \sum_{i \in P} x_{ij}\right) \qquad \min \max_{j \in M} H\left(R_{j}, \sum_{i \in P} x_{ij}\right) \qquad \text{s.t.} \quad \sum_{j \in M} x_{ij} = 1, \quad \forall i \in P \qquad \qquad \sum_{j \in M} x_{ij} = 1, \quad \forall i \in P \qquad \qquad \sum_{j \in M} x_{ij} = 1, \quad \forall i \in P \qquad \qquad \sum_{j \in M} x_{ij} = 1, \quad \forall i \in P \qquad \qquad \qquad \sum_{j \in M} x_{ij} = 1, \quad \forall i \in P \qquad \qquad \qquad \qquad \qquad x_{ij} \leq z_{ij}, \ \forall i \in P, j \in M \qquad \qquad \qquad x_{ij} \leq z_{ij}, \ \forall i \in P, j \in M \qquad \qquad x_{ij} \leq z_{ij}, \ \forall i \in P, j \in M \qquad \qquad x_{ij} \leq z_{ij}, \ \forall i \in P, j \in M \qquad \qquad x_{ij} \leq \{0,1\}$$

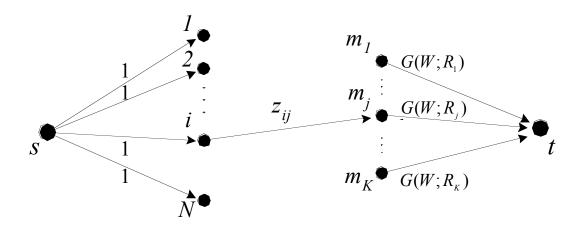
- x<sub>ij</sub> = 1 if RN i assigned to MBN m<sub>j</sub>
- P = set of RNs, M = set of placed MBNs, H() = 1/F(), G = H-1()
- W corresponds to the inverse of the throughput
  - G gives the maximum number of RNs that can be assigned to the MBN while satisfying the throughput implied by W
- Finding the optimal W\* Max-flow formulation



## **Assignment Sub-problem Details**



- Lemma:
  - Optimal W\* must satisfy G(W;R<sub>i</sub>) ∈ Z<sub>+</sub>, for some j∈ M
    - At most KN possibilities for W
- For a given value of W, we can formulate the feasibility problem as the following integer max-flow problem:



- Theorem:
  - A s-t max-flow of size N exists ⇔ the assignment sub-problem is feasible for W
    - Flow variables  $x_{ii}$ 's specify RN to MBN assignments



## **Lower Complexity Heuristics**



- Developed lower complexity sub-optimal heuristics for both MTPA and MFPA
  - Extended-Diameter Algorithm
    - Prune number of placements to  $\binom{N^2}{K}$
    - Consider pairs of nodes as defining the optimal 1-center locations
    - Achieves 3-approximation ratio in worst case
  - Farthest Point Heuristic
    - Applies a approximation algorithm of K-center algorithm for placement, and assigns RNs to their closest MBNs

Start with single 1-center at an arbitrary node
Repeatedly add MBNs at "furthest" point from existing 1-centers

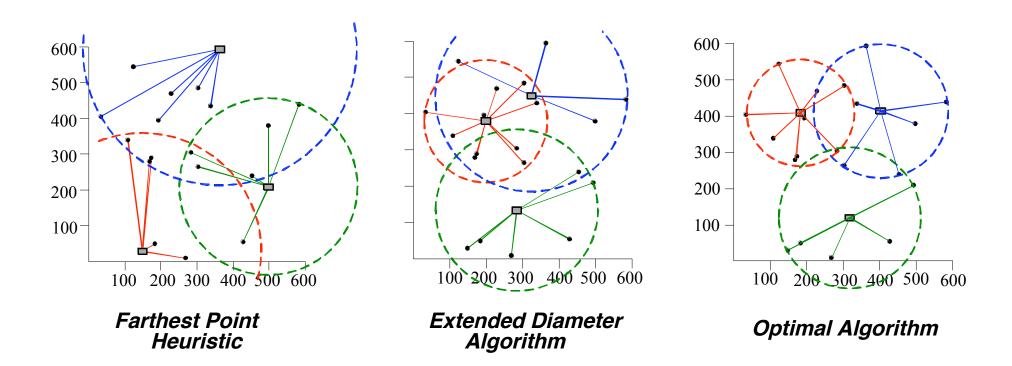
Running time of O(KN logN)



### **Simulation Results**



Single Example, 3 MBNs, 20 RNs, MFPA objective function

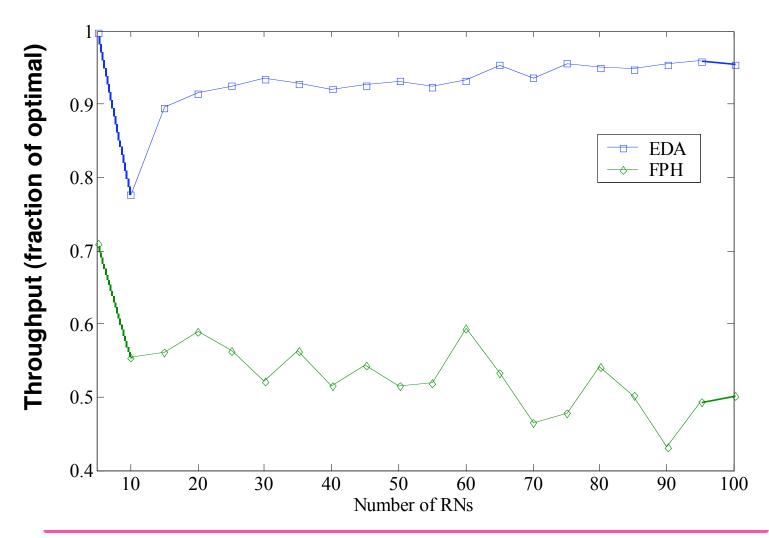




### **Simulation Results**



RNs randomly distributed, 2 MBNs, MFPA objective function





### **Outline**



- Introduction
- MBN placement under disk cover model
  - Network connectivity
- MBN placement under communications model
  - Maximizing network throughput
- MBN trajectory planning
  - Time horizon throughput maximization



## **MBN Path Planning (MPP) Problem**



### Motivation

- In many scenarios RN trajectories are known a-priori
  - Previous formulations place MBNs reactively based on independent snapshots of the network
  - This requires MBNs to move arbitrarily fast in response to RN's mobility
  - Want algorithms that incorporate RN trajectory knowledge and solve for entire MBN path a-priori
  - Account for limited MBN mobility
- Our focus: single MBN and multiple RNs



## MBN Path Planning (MPP) Problem Formulation



- Goal is to determine optimal path of a single MBN M[t]
  - Given initial MBN position,  $M(0) = M_0$
  - Assume a finite time horizon  $t \in [0,T]$ 
    - Discrete-time,  $K=T/\Delta t$  intervals of size  $\Delta t$
  - Consider time-average system throughput
  - $F[d_{max}(t)]$  = decreasing function of distance from farthest RN
- Assume N RNs, trajectory information known a-priori
  - Given RN positions  $p_i[t]$ , t = 0,...,K ( $K = T/\Delta t$ )
- Limited MBN mobility
  - Hard Constraint bound MBN velocity by V:  $d[M(t-1), M(t)] \le V\Delta t$

$$\max_{M^*} \frac{1}{K} \sum_{t=1}^{K} F[d_{\max}(t)]$$
s.t. 
$$d[M(t-1), M(t)] \leq V\Delta t$$

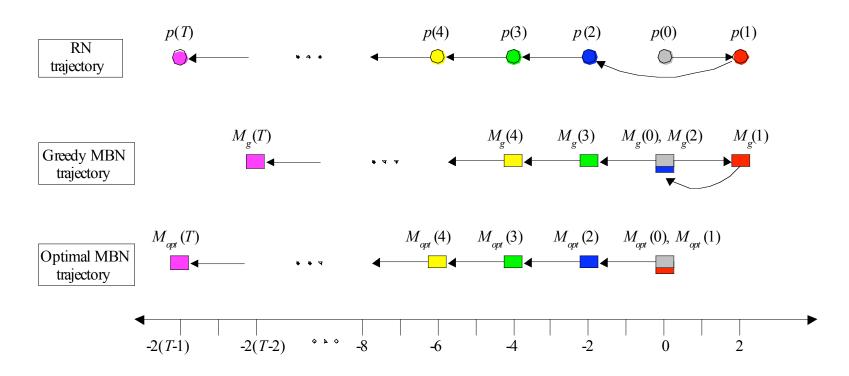
$$M(0) = M_0$$



## Sub-optimality of greedy algorithm



- Illustrative Example (Single RN, 1-D):
  - Greedy vs. Optimal solutions (V = 2,  $\Delta t = 1$ )



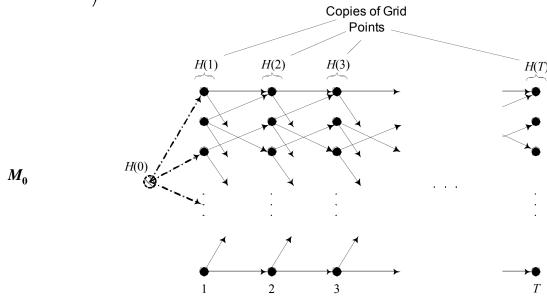
 To guarantee good performance, want algorithms that solve for the entire MBN path at once



# Dynamic Programming Algorithm (discrete locations)



- Grid the plane with horizontal/vertical spacing  $\varepsilon \leq V\Delta t$ 
  - Define graph G=(V',E)
  - Let V represent K copies of grid points H(1),...,H(K)
  - $-v \in H(t)$  represents a potential location for the MBN at time t
  - Define edge weight for (u, v),  $d[u, v] \le V\Delta t$ ,  $u \in H(t)$ ,  $v \in H(t+1)$  as  $F(\max_i d[v, p_i(t)])$  throughput function evaluated at grid point



• Optimal MBN path *constrained to grid points* corresponds to the longest (max-weight) path in the above graph



## Performance grid-based DP algorithm



- How does the grid-based DP algorithm compare to the unconstrained optimal solution?
- Lemma: on an unbounded plane, the objective of the DP algorithm is lower bounded by,

$$\frac{1}{K} \sum_{t=1}^{K} F \left[ d_{\max}^{opt}(t) + 2\sqrt{2}t\varepsilon \right]$$

- Grid-based solution deviates from optimal
  - Difference increases with time
  - Constraining MBN to travel on "grid" results in the MBN falling behind the optimal location
  - Above bound is "tight"



## **Greedy Approach**

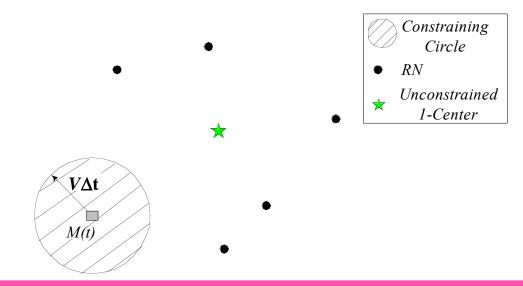


#### Motivation

- DP approach has high computational complexity
- For many practical scenarios, greedy can perform well

### Greedy High-Level Idea:

- For each time-step t = 0,...,K-1, compute the location for M(t+1) that maximizes  $F[d_{max}(t+1)]$  subject to  $d[M(t),M(t+1)] \le V\Delta t$
- Problem reduces to finding the circular constrained 1-center

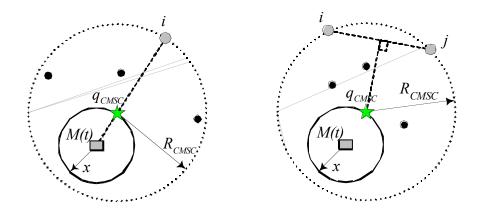




## **Circularly constrained 1-center**



- Lemma: if the unconstrained 1-center lies outside the constraining circle C. Then, the constrained 1-center must lie on the boundary of C ( $\delta$ C)
- Lemma: The constrained 1-center, q, can be defined by either,
  - A single RN i. If this is the case, then q is located on the intersection between the line segment <i,M(t)> and  $\delta$ C
  - By a pair of RNs i, j. If this is the case, then q is located on the intersection between the perpendicular bisector of <i, j >and δC



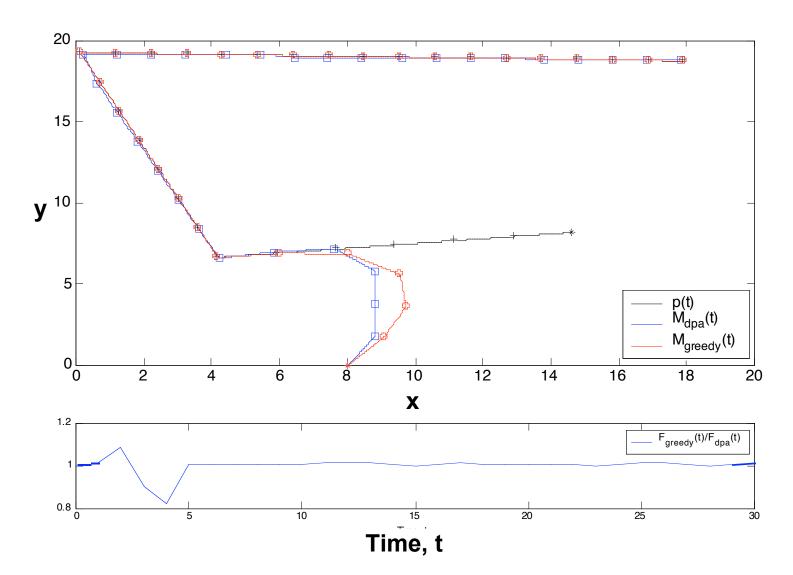
Only need to examine O(N<sup>2</sup>) possible locations



### **Simulation Results**



- Simplified CDMA throughput function,  $F[d_{max}(t)] = 1/(d_{max}(t)^2 + 1)$
- Single RN, 2-D random waypoint example,  $\Delta t = 1$ , 20X20 plane,

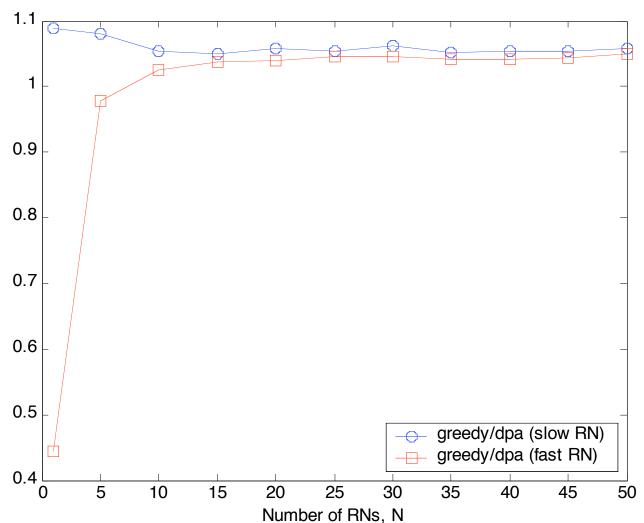




### **Simulation Results**



- Simplified CDMA throughput function,  $F[d_{max}(t)] = 1/(d_{max}(t)^2 + 1)$
- 2-D random waypoint example,  $\Delta t$  = 1, 100s time period, 20X20 plane, velocity V  $\in$  [0,2]



Eytan Modiano Slide 29



## **Summary**



- MBN architecture utilizes dedicated communication nodes to provide support
  - In contrast to traditional "peer" view of ad hoc networks
  - MBN's trajectory/position can be controlled
- Developed algorithms for MBN Placement
  - 1) Disk communications model
  - 2) SINR-based communications model
- Developed algorithms for planning the MBN trajectory
- Future directions: controlled mobility wireless networks
  - Can we take advantage of "controlled mobility" to:
    - · Increase network throughput
    - Reduce energy consumption
    - Reduce delays