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Congestion control with multipath routing

[Paganini, CISS'06, ECCO07
Mallada-P’ Netcoop '07]
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Congestion prices
o Define: link congestion price p,. (e.g., p,=4¢'(y,) or @zy, v, —¢ )
e ¢’ :average price from node i to destination d

qg =0, qid — Z aic,lj (pi,j+qj)’ i#d q,

jiin el
q" = qf((kk)), average price seen by source S(k)

Multipath routing control.

Routers control ! :={a§f ; }(i,j)d based on seen prices ”z'd . {p i q;'i }(i I

e First choice (essentially from Gallager '77):

follow negative price gradient. ¢ = B.E [ -7/ |.

The projection Ea.d keeps OZZ.d eA..




Primal congestion control under
gradient control of routing fractions

i = k(x| U'(x") - ¢" |
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Theorem: with these dynamics the system converges
globally to the optimum of the SURPLUS problem,

max S:= > U (x") =) ¢(»,)

[See P' CISS '06], extends Gallager '77.
Also in [Xi & Yeh CISS'06], combined with wireless power control.



Dual congestion control under
gradient control of routing fractions

Xt = argmax[U(xk) — quk}
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Equilibrium: solution to optimal WELFARE problem,
max » U, (x") subjecttoy<c

Convergence to equilibrium?

No! Simple examples exhibit harmonic oscillations.

+
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rate (Pkt/s)

Which model is correct for queuing delay:

Static p, = ¢@(y,) or integrator p, = l[y, — ¢, ]+
C

Example of instability,
packet simulation in ns2
Single source, two bottlenecks.

Source rate

Tine {(seconds}

e Dual model of queue is more appropriate.
e Indeed, it predicts correctly oscillation period.



Solving the problem

Adapt o based on anticipated (rather than current) price |77 = 7 + V¢

1

In control terms, add derivative action. Same equilibrium. Simulations:

Theorems [P'-Mallada, submitted to ToN, CDC'08]
the equilibrium point (optimum max ) U*(x")) is:

e |ocally asymptotically stable in an arbitrary network

e globally asymptotically stable in a network of parallel links.

Packet implementation: variants of TCP-FAST and RIP.
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Stability and user-level fairness

User rate pk{ —

Utility U, (p,)

Single path routing matrix:

B 1 if user k uses link /
*10 otherwise V= R/O

KELLY's SYSTEM
© max U . subjectto Rp<c
PROBLEM "Zk:\ "(Vp"z J P =€
USER LINK CAPACITY
UTILITY CONSTRAINTS

FUNCTION



Contrast with flow-level fairness of TCP

Rate x, per flow %;
Utility Uy, (x,)

n, flows per user.

TCP utility U,.,, (per flow) determined
by the protocol, e.g., U',,, (x)=x,x“ for a=2. Ip~

TCP: NETWORK

N > Upep (x,) subjectto » R, m,x, <¢

k

TCP UTILITY
FUNCTION

P

e \Without control of number of connections, fairness per flow is moot (Briscoe'07).

e Incentives to employ many TCP flows (e.g., p2p) . Tragedy of the commons?

e If we could control n,, can we induce with TCP the SYSTEM problem allocation?
(similar to "user problem" setting weight parameter in Kelly-Maulloo-Tan '98)



On stochastic stability of a network served by TCP
[deVeciana, Lee, Konstantopoulos '99, Bonald-Massoulié '01]

User: Poisson (4,)

arrivals, exp(y, ) workloads. %ﬁ

For each fixed {n,}, service rates x, determined by L

TCP congestion control U',,, (x) =x,x“ for a > 0.

Result: 77, Markov chain {nk} stable if and only if ZR,kﬁqz, vi.
k

H
Remark: congestion control ensures neither stability nor fairness.

e Both stability, and resource allocation depend solely on users'

"open loop" demands ﬁ

U
e Fairness choice per rovI(/ (e.g., value of «) has minimal impact.
A heavy user will compensate a low TCP rate by increasing n,,

until O, serves demand, if feasible. If not 7, 's grow without bounds.



Closing the loop onn,_ for user-level fairness

Assume that for fixed n,, the flow rate x, is determined by TCP:
x, = frer (q,) Where g, is the congestion price seen by the source,
and f..,, =(U'..,,)"', TCP demand curve. The user rate is P, =n.x,.

Objective: control n, so that the system converges to an equilibrium where

p, =n.x, solves max , » U,(p;), s.t. Rp<c, with utilities defined by users.
k

Control law for

P

continuous n,:

n Z,B(U'];l(qk)—pk).

NWK

Other recent work on
controlling no. of flows:
Chen - Zakhor '06 9 9

(for TCP over wireless).




Analysis using dual TCP congestion control,

=AU g -p); P . y
Pr = WXy
: +
X = Jrere (). — SULE Pr=7 [yz - Cl]pl
T
q li P

Theorem 1 (arbitrary network).
The equilibrium satisfies max , > U, (p,), subjectto Rp <c, and is locally
asymptotically stable. Proof: passlfvity argument (as in Wen-Arcak '03).

Theorem 2 (single bottleneck).

Assume time-scale separation: for fixed n = {n, |, let g, (n), %, (n)

be the equilibrium values from dual congestion control, and p, (n) = n, %, (n).
Then the "slow" dynamics 7n, = ,B(U',;l(c}k (n))—p, (n)) are globally convergent
to a point n" where the corresponding ,ék(n*) are at the optimum welfare point.



From fluid control to admission control.

In practice, n, is discrete (number of TCP connections). Furthermore:
e Real-time control at sources' (application layer) is impractical, incentives?
e Killing an ongoing TCP connection to reduce 7, is undesirable.

More practical alternative:
e Control increase of 72, (admit new connections), rely on natural termination.

e Admission control carried out by edge router.

e User utility U, (p, ) describes the SLA: admit new connection < U ';l(qk) > 0,

Stochastic model. Poisson(4, ) arrivals, exp(z, ) workloads.
Active sessions served with rate x, obtained from the network.

Continuous time Markov chain with state n ={n,|.

Transition rates: Dp pte, = ﬂkl{U';l(gk(n)) > D, (n)}; An—e, = .p,(n)



Single bottleneck, two users, utility U, (p,)=Klog(p,).
State space and transition rates:

Admission control markov chain transitions
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Fairness”? Simulations: JAVA-based tool with random
arrivals and workload, simulated dual congestion control.

C1 =500 C2 =400

User 1 > TCP ut|l|ty U'TCPk (X) = ka_z

[ ——1 [ —1 User utility U' (x)=x"'x"".
emulates max-min fairness.
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Fluid modeling of admission control.

Simulation results show admission control achieves optimal allocation,

provided the offered loads iare larger than the equilibrium fairshare o, .

A,

We seek analytical proof, and also understanding of the non-greedy case.

Sample path of the Markov process
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Fluid modeling of admission control.

Try a large network asymptotic, scaling capacity and user demand curve.

. . n(L)
P =¢,L, U (p)=U" (%Poj' Rescaled simulation plot Lk

Rescaled sample path (large network)

Optimal point
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Fluid limit.
=11 I
R {U'%l(ék(n))wk(n)} Hep()

For ﬁ> o . (optimal fairshare) fluid simulations converge to optimal point.

Ay

We can prove it in simple cases.

Fluid limit

| Optimal point
_—




Fluid limit for the case of non-greedy users:

: . . A .
n, =/1k1 i A — U, p,(n); assume a certain user has —~< p’,
U@ m)>py (). H,
Example: ¢ =1, user 1 with ﬁ =(.3, greedy user 2.
Flaic limit, non-greed lLll i =
n=(n, n,) SN (V200
T~
I

Conjecture (verified in simulations so far): converges to solution of

max , ZUk (p,), s.t. Rp<c, where U, () corresponds to a demand curve
k

saturated at rate p, = /1—" Non-greedy user is protected.
k



Back to multipath, work in progress.

Suppose: edge router can choose in which path to route a new flow.
Given: prices g, of the various candidate routes, a natural policy is:

e Admit new connection < min, g; <U'(p,), where p, => p;

e |f admitted, select cheapest path.

Example (symmetric users): C1=150
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Multipath admission control = N P
Avg. Load 300 ,// b ' \\.
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Conjecture: converges to optimal multipath welfare allocation,

max , Zk:Uk(pk), subject to p, = > p;, ;Z‘p}; <c,
4 rd



Conclusions and Future Work

We studied two cross-layer resource allocation problems:
Congestion control and multipath routing.
Congestion control and admission control

Objective: welfare optimization. We designed decentralized
control laws based on prices, achieve these equilibria.

Dynamic analysis: local stability proofs in arbitrary networks,
global results for simpler cases.

Beware on simplistic models for delay!
Simulation studies confirm and generalize the above theory.

Future work:
Part I: Global proof in arbitrary networks, loss-based implementation.
Part Il: Stability proofs for fluid limit model, ns2 implementation.
Combination: multipath admission control.



