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• Part I (with Enrique Mallada). Combined congestion 
control and node-based multipath routing: new results 
on stability since CISS’06. 

• Part II (with Andrés Ferragut, in CISS’08 paper).
Achieving network stability and user fairness through 
admission control of TCP connections. 
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Congestion control with multipath routing
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  The projection   keeps  
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Primal congestion control under
gradient control of routing fractions

( ) '( )k k k kx x U x qκ  = − �

: ( ) ( )

 with these dynamics the system converges
globally to the optimum of the SURPLUS proble

max
m,

 

Theorem:

k k
l lS U x yφ= −∑ ∑

[ ],d
i

d
i j

d
i iEα πα β −=� LINKS

SOURCES

Traffic splitting

Node price
recursionSource prices kq Link prices lp

Source rates kx

Link rates ly

Split 
ratios d

iα

'( )l lp yφ=

Prices seen d
iπ
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Dual congestion control under
gradient control of routing fractions
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Solving the problem
*Adapt based on anticipated (rather than current) price 

In control terms, add derivative action. Same equilibrium. Simulations:
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variantsPacket i  of TCP-mplement FAST andation: RIP. 
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 Without control of number of connections, fairness per flow is moot (Briscoe'07). 
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User: Poisson ( ) 
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k

k

λ
µ →
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Assume that for fixed  the flow rate  is determined by TCP: 
 where is the congestion price seen by the source, 
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Analysis using dual TCP congestion control,  
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sources'
In practice,  is discrete (number of TCP connections). Furthermore: 
 Real-time control at ap plication layer) is impractical, incentives?
 Killing an ongoing TCP connection to reduce is  
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From fluid control to admission control.
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( ) log( ).Single bottleneck, two users, utility 
State space and transition rates: 
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Fairness? Simulations: JAVA-based tool with random 
arrivals and workload, simulated dual congestion control.

2

5

' ( )

' ( ) ' .

TCP utility 
User utility 
emulate

.

s max-min fairness.

TCPk k

k

U x x

U x x

κ

κ

−

−

=

=

21 3,,  ρ ρρ 21 3,,  n nn



*

Simulation results show admission control achieves optimal allocation,

provided the offered loads are larger than the equilibrium fairshare  

We seek analytical proof, and also understanding of 
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the non-greedy case.

Fluid modeling of admission control.

Optimal point
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Try a large network asymptotic, scaling capacity and user demand curve.

 Rescaled simulation plot 
k k

L
LL kc c L

n
U U L L

ρρ ρ



= =  

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Fluid limit.

Optimal point
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Fluid limit for the case of non-greedy users:
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Suppose: edge router can choose in which path to route a new flow. 
Given: prices of the various candidate routes, a natural policy is:

 Admit new connection where
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Back to multipath, work in progress.

Example (symmetric users):



Multipath admission control 
Simulations 12ρ
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Conclusions and  Future Work
• We studied two cross-layer resource allocation problems: 

I. Congestion control and multipath routing.
II. Congestion control and admission control 

• Objective: welfare optimization. We designed decentralized
control laws based on prices, achieve these equilibria. 

• Dynamic analysis: local stability proofs in arbitrary networks, 
global results for simpler cases. 

• Beware on simplistic models for delay! 
• Simulation studies confirm and generalize the above theory.   
• Future work: 

– Part I: Global proof in arbitrary networks, loss-based implementation.
– Part II: Stability proofs for fluid limit model, ns2 implementation.
– Combination: multipath admission control. 


