
DISTRIBUTED ALGORITHM AND REVERSIBLE NETWORK

SHREEVATSA RAJAGOPALAN AND DEVAVRAT SHAH

Abstract. Motivated to design a feasible optical network architecture for the future Internet, we address
the question of scheduling (wavelength assignment) in an optical network. The key challenge in designing a

scheduling algorithm lies in solving a combinatorial optimization problem under very stringent distributed

constraints. Specifically, given R random variables x1, . . . , xR taking integer values, each variable is required
to find its assignment so that collectively they maximize

P
r Wrxr subject to some linear constraints that

Ax ≤ C. In doing so, each variable can only avail of two pieces of information (and nothing else): one,
its own weight Wr, two, given its current values (and the values of other variables being unknown), can it

increase it by +1 or not. As the main result of this paper, we present a randomized algorithm that solves this

problem. Our algorithm builds upon classical theory of reversible networks. To the best of our knowledge,
this is the first such algorithm for such a stringent distributed problem.

1. Introduction

The future Internet will be subjected to extremely stringent demand in terms of bandwidth by data-
mongering, delay-sensitive next-generation applications. This necessitates the use of optical technology for
network design, given the limitations of a purely electronic network. However, slow electronic memory and the
lack of progress in designing all-optical routers suggest that a packet optical architecture is highly infeasible.
On the other hand, the current electronic packet network architecture has been reasonably serving our
purpose for current needs. Therefore, a canonical future network architecture must be a “hybrid” between an
extremely high-bandwidth “optical core network” and a relatively low-bandwidth “electronic edge network”.
The electronic network works efficiently with packet-switched architecture; the only feasible way to operate
an optical network seems to be a circuit-switched architecture. Therefore, in order to design such a hybrid
opto-electronic architecture, it is necessary to design an “interface” between the packet-switched electronic
and circuit-switched optical networks. In this paper, we consider a natural architectural solution for such
an “effective interface” so that current end-to-end protocols, such as the congestion control protocol (TCP),
operate seamlessly.

Figure 1. The hybrid interface between electronic edge and optical core network.

Both authors are at MIT. SR is with ORC and DS is with LIDS and EECS. Email: {vatsa, devavrat}@mit.edu. This work
was supported by NSF FIND grant for Optical network design.

1

498

Figure 1 presents an illustration of the interface: packets arriving through electronic networks are gathered
at the ingress of optical networks forming a reasonably long “flow”; the flows are buffered at the ingress
port after admission control, which depends on the traffic shaping and buffer management schemes; the
scheduling algorithm decides which flow gets to transfer its data by using available wavelengths along the
path given by the routing mechanism. The three main algorithmic parts of this interface are: (a) admission
control, (b) routing, and (c) scheduling. The admission control is likely to follow as a ‘statistical police’ given
the routing and scheduling. The routing operates at a relatively much slower time-scale than scheduling,
as the aggregate demands between various source-destination pairs (in the core network there are not too
many such pairs and hence aggregation takes place) change slowly. Therefore, routing is based on learning
statistics and using an offline optimization algorithm. On the other hand, the scheduling algorithm has
to operate at the actual time-scale in order to react to the dynamics. The scheduling problem in such a
setup is very challenging because: (i) an efficient scheduling algorithm boils down to solving a combinatorial
(integer) optimization problem, and (ii) each ingress node needs to find this solution in a totally distributed
manner, that is, each ingress node can only obtain information from the network as to whether wavelength
on a certain path is available or not, but it can not obtain any information about other nodes’ assignment or
even their objective. Therefore, even finding a solution for this problem under above stringent constraints,
even without worrying about efficiency, is challenging.

To the best of our knowledge, there is no solution known in the literature across communities: distributed
algorithms, optimization and networks. As the main result of this paper, we design a novel distributed
algorithm for solving this problem using the theory of reversible networks. We believe that the algorithm
utilizes the network capacity to the fullest, and that it performs well in terms of the resulting buffer-sizes
remaining small. A salient feature of our algorithm is the possibility of trading off the performance of the
algorithm with the frequency of querying the network for availability—frequency of querying network is
proportional to the control-information overhead in the operation of the network. Thus, our scheduling
algorithm provides: (a) an efficient distributed solution, (b) tunability in terms of control-information and
performance, and (c) the first ever solution to an important distributed algorithms problem.

1.1. Organization. In Section 2, we formulate the underlying mathematical problem and the necessary
algorithmic problem that needs to be solved in distributed manner. In Section 3, we present a distributed
algorithm for solving this problem. We present the proof of its correctness and computation time as well.
In Section 4, we briefly describe how this algorithm can be used for scheduling.

2. Problem formulation

The network is a graph G = (V,E). There are R routes, given by a R × |E| matrix A indicating the
number of times a particular link occurs in a particular route. Arrivals are modeled as independent Poisson
processes with arrival rate νr on route r. Each call simultaneously holds all links on its route, and holds
them for a period that is exponentially distributed with unit mean. Calls are buffered at the ingress. A call
can access the network if and only if it would not exceed the capacity of any link on its route.

We seek to devise a scheduling policy : for the buffers to make decisions, possibly based on queue sizes. A
buffer may request to send one unit call on a particular route. If the request is granted, the buffer sends a
call through. Our notion of cost here is the number of requests made. Note that each buffer has extremely
limited information: the only information comes from queries about whether the network can accommodate
an additional call on this route or not.

Following the classical “max-weight” philosophy would indicate that the set of routes served should be
that which maximizes the quantity

∑
r xrf(Br) where Br is the size of buffer r, for some appropriate function

f . This is an integer optimization problem, with an additional constraint enforced by the limited nature
of the information available to each buffer. Thus we are led to a distributed optimization problem of the
following form, which we shall call d-opt:

2

499

d-opt: Given variables (x1, . . . , xR); associated weights (W1, . . . ,WR).
Find x that solves

max
∑

Wrxr

such that
x ∈ X =

{
x ∈ NR : Ax ≤ C

}
with the constraint that it must be done in a purely distributed way: At any instant, each variable
xr can only obtain information (from an oracle) as to whether it can itself be increased by 1 or not,
but has no other information, such as the values of the other variables.

3. Algorithm

3.1. Description. We describe a continuous-time algorithm for d-opt. In essence, we simulate the network.
Each variable xr has an independent Poisson clock, whose rate depends on Wr. Namely, it is exp(NWi)
for some large N . Each time the clock ticks, the oracle is asked whether the variable can be increased by
1. If it can, the variable is increased, else nothing happens. The variable is then decreased by 1 after a
time that is exponentially distributed with unit mean. (This is analogous to the call entering and leaving
the network.) We will prove that if this algorithm is run for a sufficiently long time, the solution to the
optimization problem can then be simply read off as the values of the variables at that instant:

Theorem 1. Let x∗ be the solution to d-opt, i.e., x∗ ∈ arg max(WTx). Let x(t) = (x1(t), . . . , xr(t)) be the
state of the system at time1 t. Then, for any t such that t > exp(7N

∑
rWrx

∗
r) log(1/δ),

Pr[WTx(t) ≤WTx∗ − ε] ≤ δ +
log |X |
Nε

The above result suggests that by selection of N = log |X |δ−1ε−1, the algorithm finds solution within ε
additive error of the optimal solution with probability at least 1 − 2δ. Note that the parameter, N of the
algorithm is independent of weights W but depends only on the total problem size |X |.

3.2. Correctness. We note some properties of the stationary distribution.

Lemma 1. Suppose a function T is defined on a set X . For any probability distribution µ on X , define
F (µ) = Eµ[T (x)] +H(µ). Then, F (·) is uniquely maximized by the distribution π, given by

π(x) =
1
Z

exp(T (x))

where Z =
∑
x∈X exp(T (x)) is the appropriate constant of proportionality.

Proof. For any distribution µ,

F (µ) = Eµ[T (x)] +H(µ) =
∑
x

µ(x)T (x)−
∑
x

µ(x) logµ(x)

=
∑
x

µ(x)(log π(x) + logZ)−
∑
x

µ(x) logµ(x)

= (logZ)
∑
x

µ(x) +
∑
x

µ(x) log
π(x)
µ(x)

≤ logZ + log
∑
x

µ(x)
π(x)
µ(x)

= logZ

where we use the concavity of the log function, with equality holding only when µ = π. �

As a sanity check, note that when T (x) = 0, Lemma 1 says that the uniform distribution has the maximum
entropy among all distributions on X .

1Here, we measure time in terms of number of Poisson clock ticks.

3

500

Lemma 2. Let Z =
∑
x∈X exp(T (x)) as above. Let f be any function we want to maximize on X . Let f(x∗)

be the maximum possible value of f(x), and let Kε = {x ∈ X : f(x) ≤ f(x∗)− ε}. Let πN be the distribution
given by πN (x) ∝ exp(T (x) +Nf(x)) Then,

πN (Kε) ≤
logZ
εN

Proof. Let µ∗ be the distribution that assigns all probability on x∗, i.e.,

µ∗(x) =

{
1 if x = x∗

0 otherwise

We know that πN maximizes Eµ[T (x) +Nf(x)] +H(µ) = F (µ) +N Eµ[f(x)], by lemma 1. Thus,

F (µ∗) +Nf(x∗) ≤ F (πN) +N EπN
[f(x)] ≤ F (πN) +N(f(x∗)− επN (Kε)) and hence

πN (Kε) ≤
F (πN)− F (µ∗)

εN
≤ F (π)

εN
�

With these lemmas in hand, we now turn to our algorithm. The evolution of the “state” (x1, x2, . . .) in
our algorithm can be viewed as a Markov process, analogous to that in a loss network whose routes and
capacities are given by A and C, so that the feasible states are

{
x ∈ NR : Ax ≤ C

}
, precisely the feasible set

X for our problem d-opt. (This is no surprise, as we formulated our problem based on a network of that
form.) A loss network has independent Poisson arrival processes along each route, and call holding times are
independently and exponentially distributed with unit mean.

From the theory of reversible networks ([1], [2]), we know that such a loss network is a reversible Markov
process, with stationary probability of any state x being π(x) ∝

∏
r ν

xr
r /xr! where νr are the arrival rates.

Here, as the arrival (request) rates are νr = exp(NWr), the process has the stationary distribution

(1) πN (x) ∝
∏
r

exp(NWrxr)
xr!

= exp(T (x) +Nf(x))

where T (x) = log(
∏
r

1
xr!) and f(x) =

∑
rWrxr is precisely the objective function we wish to maximize.

Hence from the previous lemma, we can conclude the following:

Lemma 3. Let Kε = {x :
∑
Wrxr ≤

∑
Wrx

∗
r − ε}, and let πN be the stationary distribution of our algo-

rithm. Then,

πN (Kε) ≤
log |X |
εN

Proof. exp(T (x)) =
∏
r

1
xr! ≤ 1 for every x, so Z =

∑
x∈X exp(T (x)) ≤ |X |, and it follows from lemma 2. �

3.3. Cost of the algorithm. We now give a (very loose) upper bound on the mixing time, and hence on
the cost, of the algorithm.

In the Markov process that arises from our algorithm, the stationary probability πN (x) of a particular
state x = (x1, . . . , xi, . . . , xR) is as given in equation 1. It transitions to a state like (x1, . . . , xi + 1, . . . , xR)
at a rate proportional to νi = exp(NWr), and to a state like (x1, . . . , xi − 1, . . . , xR) at a rate proportional
to xi. Call the transition rate between states x and y as q(x, y).

In order to apply known results about reversible discrete-time Markov chains, we look at the “jump chain”
of the Markov process. This is a discrete-time Markov chain on the same set of states X , with transition
probabilities p(x, y) = q(x,y)

q(x) where q(x) =
∑
y q(x, y). With these transition probabilities, the Markov chain

is reversible, with stationary distribution given by

πJ(x) =
π(x)q(x)∑
π(x)q(x)

Thus, for any two states x and y,

Q(x, y) = πJ(y)p(y, x) = πJ(x)p(x, y) =
π(x)q(x)∑
π(x)q(x)

q(x, y)
q(x)

4

501

Define

h = min
π(S)≤ 1

2

Q(S, Sc)
πJ(s)

where Q(S, Sc) =
∑

x∈S,y∈Sc

Q(x, y)

We know that the second largest eigenvalue β1 of P satisfies β1 ≤ 1− h2

2 . We therefore want a lower bound
on h. We state a number of steps below leading eventually to a (loose) lower bound:

1.
∏
r

exp(NWrxr)
xr! ≤

∏
r exp(NWrxr) = exp(N

∑
rWrxr) ≤ exp(N

∑
rWrx

∗
r).

2. So
∑
x∈X

∏
r

exp(NWrxr)
xr! ≤ |X | exp(N

∑
rWrx

∗
r).

3.
∏
r

exp(NWrxr)
xr! ≥

∏
r

1
xr! ≥ exp(−

∑
r xr log xr) ≥ exp(−2

∑
r xr).

4. q(x, y) ≥ 1 as it is either xi or exp(NBi) for some i.

5. So π(x)q(x, y) ≥ exp(−2
∑
r xr)/(|X | exp(N

∑
rWrx

∗
r)).

6. Going the other way, π(x) ≤ 1.

7. And q(x) =
∑
r q(x, y) ≤ 2Rmax exp(NWr).

8. So
∑
x π(x)q(x) ≤ |X |(2Rmax exp(NWr)).

Finally, putting it all together,

h ≥ min
S
Q(S, Sc) ≥ min

x,y
Q(x, y) ≥ 1

exp(3N
∑
rWrx∗r)

for sufficiently large N . Therefore ([3]), the δ-mixing time of the process is bounded above as

τ(δ) ≤ exp(7N
∑
r

Wrx
∗
r) log(

1
δ

).

This means that, after time τ(δ), the probability of any event is at least the probability under stationary
distribution minus δ. This will immediately imply the time bound and probability bound as claimed in
Theorem 1. This completes the proof of Theorem 1.

4. Scheduling in optical networks

Having solved the optimization problem in a distributed setup, we return to the setting that motivated
it. In the original network setting, the distributed constraint corresponds naturally to the nature of the
network, and the oracle that each buffer requests for information is the network itself.

We are thus able to induce the network to be in feasible states that maximizes
∑
r xrWr, for weights Wr

of our choosing. In particular, we can take the Wr to be some increasing function of (Br), the size of the
buffer at a particular instant. The rates of the Poisson clocks change whenever the size of the queue changes.
We believe that, as in the maximum-weight scheduling paradigm, tuning the serving policy in this manner
will lead to stable scheduling.

In particular, with Wr a function like log logBr, the mixing time is o(Br). When the buffer sizes are large,
this means that the change in the sizes while the algorithm approaches stationarity is relatively insignificant.
Thus, we strongly believe that this constitutes a stable scheduling policy. Completing this proof will be our
immediate future work.

References

1. F.P. Kelly, Reversibility and stochastic networks, Wiley, London, 1979.
2. , Loss networks, Annals of Applied Probability (1991), pp. 319–378.

3. R. Montenegro and P. Tetali, Mathematical aspects of mixing times in markov chains, Found. Trends Theor. Comput. Sci.
1 (2006), no. 3, 237–354.

5

502

