Downlink Scheduling and Resource Allocation for OFDM Systems

J. Huang¹ V. Subramanian² R. Agrawal ² R. Berry³

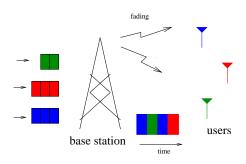
¹Princeton University

²Motorola Inc.

³Northwestern University

CISS, March 2006

"Channel Aware" Scheduling and Resource Allocation



- Dynamically schedule users based on channel conditions/QoS.
 - Use frequent channel quality feedback & adaptive modulation/coding.
 - Exploit multi-user diversity.
- Key component of recent wireless data systems
 - e.g. CDMA 1xEVDO, HSPDA, IEEE 802.16.

CISS (March 2006) OFDM Scheduling 2 / 22

Gradient-based Scheduling

- Scheduler needs to balance users' QoS and global efficiency.
- Many approaches accomplish this via gradient-based scheduling.
- Assign each user a utility, $U_i(\cdot)$, depending on delay, throughput, etc.
- Scheduler maximizes first order change in total utility. i.e. choose rate $\mathbf{r} = (r_1, \dots, r_N)^T$ to solve:

$$\max_{\mathbf{r} \in \mathcal{R}(\mathbf{e})} \nabla \mathbf{U}(\mathbf{X}(t)) \cdot \mathbf{r} = \max_{\mathbf{r} \in \mathcal{R}(\mathbf{e})} \sum_{i} \dot{U}_{i}(X_{i}(t)) r_{i},$$

▶ Myopic policy, requires no knowledge of channel or arrival statistics.

3 / 22

Gradient-based Scheduling Examples

• α -fairness - utility function of average throughput W_i :

$$U_i(W_i) = \begin{cases} \frac{1}{\alpha}(W_i)^{\alpha}, & \alpha \leq 1, \alpha \neq 0. \\ \log(W_i), & \alpha = 0 \end{cases}$$

- $\alpha = 0 \Rightarrow \text{Prop. fair.}$
- $\alpha = 1 \Rightarrow Max$. throughput.
- Utility may also be function of delay/queue size.
 - e.g. Stabilizing policies.

State-dependent Feasible Rate Regions

- Optimization is over feasible rate region $\mathcal{R}(\mathbf{e}_t)$.
 - \mathbf{e}_t = available channel state information.
 - ▶ Region depends on physical layer technology and multiplexing used.

State-dependent Feasible Rate Regions

- Optimization is over feasible rate region $\mathcal{R}(\mathbf{e}_t)$.
 - \mathbf{e}_t = available channel state information.
 - Region depends on physical layer technology and multiplexing used.

Ex: TDM systems

- $\mathcal{R}(\mathbf{e}_t) = \text{simplex with max rate } r_i \text{ for each user } i.$
- ▶ Gradient-policy \Rightarrow schedule users with max $\dot{U}_i(X_i)r_i$.

CISS (March 2006) OFDM Scheduling 5 / 22

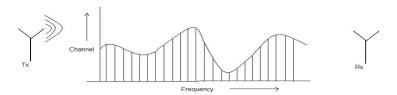
State-dependent Feasible Rate Regions

- Optimization is over feasible rate region $\mathcal{R}(\mathbf{e}_t)$.
 - \mathbf{e}_t = available channel state information.
 - Region depends on physical layer technology and multiplexing used.

Ex: TDM systems

- $\mathcal{R}(\mathbf{e}_t) = \text{simplex with max rate } r_i \text{ for each user } i.$
- Gradient-policy \Rightarrow schedule users with max $U_i(X_i)r_i$.
- In many systems, additional multiplexing within a time-slot.
 - e.g. CDMA (HSDPA), OFDMA (802.16).
 - Requires allocating physical layer resources among scheduled users.

OFDMA systems



- Frequency band divided into N subcarriers/tones.
- Resource allocation:
 - assigning tones to users
 - allocate power across tones.

OFDMA rate region

- Initially, allow users to time-share each tone.
 - ▶ In practice, one user/tone.
- Assume rate/tone = log(1 + SNR).

OFDMA rate region

- Initially, allow users to time-share each tone.
 - ▶ In practice, one user/tone.
- Assume rate/tone = log(1 + SNR).
- Rate region (similar to Li/Goldsmith, Wang, et al, etc.):

$$\mathcal{R}(\mathbf{e}) = \left\{ \mathbf{r} : \ r_i = \sum_{j} x_{ij} \log \left(1 + \frac{p_{ij} e_{ij}}{x_{ij}} \right), \sum_{ij} p_{ij} \le P, \right.$$
$$\left. \sum_{i} x_{ij} \le 1, \ \forall j, \ (\mathbf{x}, \mathbf{p}) \in \mathcal{X} \right\},$$

where

- ▶ $\mathcal{X} := \{(\mathbf{x}, \mathbf{p}) \geq \mathbf{0} : x_{ij} \leq 1, \ \forall i, j\}.$
- x_{ij} = fraction of subchannel j allocated to user i.
- $ightharpoonup p_{ii} = power allocated to user i on subchannel j.$
- e_{ii} = received SNR/unit power.

Model Variations

- **1** Maximum SINR constraint: s_{ii} (limit on modulation order)
 - ▶ Let

$$\mathcal{X} := \left\{ (\mathbf{x}, \mathbf{p}) \ge \mathbf{0} : 0 \le x_{ij} \le 1, 0 \le p_{ij} \le \frac{x_{ij} s_{ij}}{e_{ij}} \ \forall i, j \right\}. \tag{1}$$

Model Variations

- **1** Maximum SINR constraint: s_{ii} (limit on modulation order)
 - Let

$$\mathcal{X} := \left\{ (\mathbf{x}, \mathbf{p}) \ge \mathbf{0} : 0 \le x_{ij} \le 1, 0 \le p_{ij} \le \frac{x_{ij} s_{ij}}{e_{ij}} \ \forall i, j \right\}. \tag{1}$$

- Sub-channelization (bundle tones to reduce overhead)
 - Possible channelizations:
 - ★ Interleaved (802.16 standard mode)
 - ★ Adjacent (Band AMC mode)
 - * Random (e.g. frequency hopped)
 - ▶ Can accommodate by letting x_{ij} = allocation of subchannel j.
 - ▶ View eii as "average" SNR/subchannel.

Optimal Scheduling algorithm

The optimal gradient-based scheduling algorithm must solve:

$$\max_{x_{ij}, p_{ij} \in \mathcal{X}} V(\mathbf{x}, \mathbf{p}) := \sum_{i} w_{i} \sum_{j} x_{ij} \log \left(1 + \frac{p_{ij}e_{ij}}{x_{ij}} \right)$$
subject to:
$$\sum_{i} p_{ij} \leq P, \text{ and } \sum_{i} x_{ij} \leq 1, \forall j \in \mathcal{N},$$
(OPT)

- Need to solve every scheduling interval.
- We consider optimal and suboptimal algorithms for this.

CISS (March 2006)

Optimal algorithm

- Scheduling problem (OPT) is convex and satisfies Slater's condition.
 - \Rightarrow No duality gap.
- Consider Lagrangian:

$$L(\mathbf{x}, \mathbf{p}, \lambda, \boldsymbol{\mu}) := \sum_{i} w_{i} \sum_{j} x_{ij} \log \left(1 + \frac{p_{ij} e_{ij}}{x_{ij}} \right) + \lambda \left(P - \sum_{i,j} p_{ij} \right) + \sum_{j} \mu_{j} \left(1 - \sum_{i} x_{ij} \right).$$

Associated dual function:

$$L(\lambda, \mu) = \max_{(\mathbf{x}, \mathbf{p}) \in \mathcal{X}} L(\mathbf{x}, \mathbf{p}, \lambda, \mu)$$

• By duality, optimal solution to (OPT) is:

$$V^* = \min_{(\lambda, \mu) > \mathbf{0}} L(\lambda, \mu)$$

Dual Function

- Can explicitly solve for the dual function.
- Fixing \mathbf{x}, λ, μ , optimizing over $p_{ij} \Rightarrow$ "water-filling" like solution.

$$\rho_{ij}^* = \frac{\mathsf{x}_{ij}}{\mathsf{e}_{ij}} \left[\left(\frac{\mathsf{w}_i \mathsf{e}_{ij}}{\lambda} - 1 \right)^+ \wedge \mathsf{s}_{ij} \right].$$

Dual Function

- Can explicitly solve for the dual function.
- Fixing $\mathbf{x}, \lambda, \boldsymbol{\mu}$, optimizing over $p_{ij} \Rightarrow$ "water-filling" like solution.

$$p_{ij}^* = rac{x_{ij}}{e_{ij}} \left[\left(rac{w_i e_{ij}}{\lambda} - 1
ight)^+ \wedge s_{ij}
ight].$$

• Given optimum p_{ij}^* ,

$$L(\mathbf{x}, \mathbf{p}^*, \lambda, \boldsymbol{\mu}) = \sum_{ij} \mathbf{x}_{ij} (\mu_{ij}(\lambda) - \mu_j) + \sum_j \mu_j + \lambda P$$

▶ Optimizing over $x_{ij} \in [0,1]$ is now easy.

$$\Rightarrow L(\lambda, \mu) = \sum_{ij} (\mu_{ij}(\lambda) - \mu_j)^+ + \sum_j \mu_j + \lambda P$$

Minimizing the dual function

• Dual function:

$$L(\lambda, \boldsymbol{\mu}) = \sum_{ij} (\mu_{ij}(\lambda) - \mu_j)^+ + \sum_{i} \mu_j + \lambda P.$$

• First minimize over μ :

$$L(\lambda) := \min_{\mu \geq 0} L(\lambda, \mu) = \lambda P + \sum_{i} \max_{i} \mu_{ij}(\lambda).$$

Requires one sort of users per subchannel.

Minimizing the dual function

Dual function:

$$L(\lambda, \boldsymbol{\mu}) = \sum_{ij} (\mu_{ij}(\lambda) - \mu_j)^+ + \sum_{i} \mu_j + \lambda P.$$

• First minimize over μ :

$$L(\lambda) := \min_{\mu \geq 0} L(\lambda, \mu) = \lambda P + \sum_{i} \max_{i} \mu_{ij}(\lambda).$$

- Requires one sort of users per subchannel.
- $L(\lambda)$ is convex function of λ .
 - ► Can minimize using iterated 1-D search (e.g. golden section).

Optimal Primal Values.

• Given λ^* , μ^* , let

$$(\mathbf{x}^*, \mathbf{p}^*) = \arg \max_{(\mathbf{x}, \mathbf{p}) \in \mathcal{X}} L(\mathbf{x}, \mathbf{p}, \lambda^*, \boldsymbol{\mu}^*).$$
 (*)

- If (x*, p*) are primal feasible and satisfy complimentary slackness, they are optimal scheduling decision.
- Can find these as before, except multiple μ_{ij} 's may be tied at the maximum value.
 - \Rightarrow Multiple x_{ii} 's can be > 0.
 - Not all choices result in feasible primal solutions.

Breaking ties - optimal time-sharing

- When ties occur, can show $L(\lambda)$ is not differentiable.
- Each (x^*, p^*) that satisfy (*) and complimentary slackness give a subgradient of $L(\lambda)$.
- Simple sort can find max and min subgradients (one user/subchannel).
- Time-sharing between these gives a primal optimal solution.
 - At most 2 users/subchannel.

Single User per Subchannel Heuristic

- In practice typically restricted to one user/subchannel.
- Given optimal dual solution, if no "ties" this will be satisfied.
- When ties occurs, selecting one user involved in the tie corresponds to choosing one subgradient.
- In simulations, we choose the user that corresponds to the smallest negative subgradient.
 - ▶ Other mechanisms also possible.
 - Resulting power constraint will not be tight.

Re-optimizing the power allocation

• Given a feasible x, consider

$$\max_{\mathbf{p}: (\mathbf{p}, \mathbf{x}) \in \mathcal{X}} V(\mathbf{x}, \mathbf{p}) \quad \text{s.t. } \sum_{ij} p_{ij} \leq P$$

- Solution again "water-filling" like power allocation with a given Lagrange multiplier $\tilde{\lambda}$.
- ullet Optimal $ilde{\lambda}$ can be shown to satisfy fixed point equation

$$\lambda = f(\lambda),$$

- $f(\lambda)$ is increasing, finite-valued (piece-wise constant).
 - \Rightarrow finite time algorithm for finding $\tilde{\lambda}$.

Single Sort Heuristic

- Optimal subchannel assignment is to user with max $\mu_{ij}(\lambda)$.
 - Requires iterating to find optimal λ .
- Instead consider single-sort using metric $w_{ij} \bar{R}_{ij}$,

$$\bar{R}_{ij} = \log[1 + (s_{ij} \wedge (e_{ij}P/N))].$$

Motivated by e.g. [Hoo, et al.].

- Then optimally allocate power as before.
- Other heuristics in paper.

Numerical Results

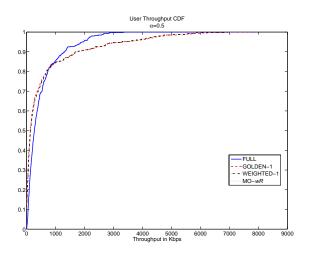
Simulation set-up:

- Single cell, M = 40 users.
- $e_{ij} = (fixed location-based term) \times (frequency selective fast fading)$
 - Fixed term = empirical distribution.
 - frequency selective term = block fading in time (2*msec* coh. time); standard ref. mobile delay spread (1 $\mu sec \approx 250 \text{MHz Doppler}$).
- 5 MHz BW, 512 tones.
- Initially adjacent channelization, 8 tones/subchannel.
- use α -utility functions.
- Simulate full algorithm (with one user/subchannel) and single sort.

Different choices of α

α	Algorithm	Utility	Log U	Rate(kbps)	Num.
0.5	FULL	1236	12.58	497.8	5.40
0.5	MO-wR	1234	12.56	498.3	5.17
0	FULL	12.69	12.69	396.8	5.75
0	MO-wR	12.68	12.68	393.0	5.47
1	FULL	716955	8.04	719.3	3.04
1	MO-wR	716955	8.04	719.3	3.04

User throughput CDFs



 $\alpha = 0.5$.

Different channelization schemes

Chan.	Algorithm	Utility	Log U	Rate (kbps)	Num.
Adj.	FULL	1236	12.58	497.8	5.40
Adj.	MO-wR	1234	12.56	498.3	5.17
Ran.	FULL	1171	12.42	465.2	4.08
Ran.	MO-wR	1167	12.40	465.5	3.64
Int.	FULL	1136	12.32	447.1	1
Int.	MO-wR	1142	12.33	455.2	1

Upperbound on rate/channel; looser for interleaved/random case.

Conclusions

- Presented optimal and sub-optimal algorithms for gradient-based scheduling in OFDM systems.
- Can accommodate different channelizations and max. SINR constraints.
- Found simple sort has near optimal performance.