

Chandru Raman Roy Yates Narayan Mandayam

Rutgers University

Talk Outline

- Introduction Cognitive Radio & Spectrum Server
- Scheduling of variable rate links
- End-to-end scheduling of flows using spectrum server
- Fairness and Max-Min Fair Flows
- Conclusion

The Spectrum Debate

- What everyone agrees on:
 - □ Spectrum use is inefficient
 - ☐ FCC licensing has yielded false scarcity
- Proposed Solutions
 - □ Spectrum Property Rights
 - The triumph of economics
 - □ Open Access (Commons)
 - The triumph of technology

Open Access

- A Technology Panacea
 - □ Agile wideband radios will dynamically share a commons
 - ☐ Minor technical rules (power spreading) for transceivers
- Systems of end-user devices
 - ☐ Spread spectrum, UWB, MIMO, OFDM
 - □ Short range communications
 - ☐ Ad hoc multi-hop mesh networks
- **Evidence:** (perceived) success of 802.11 vs. 3G

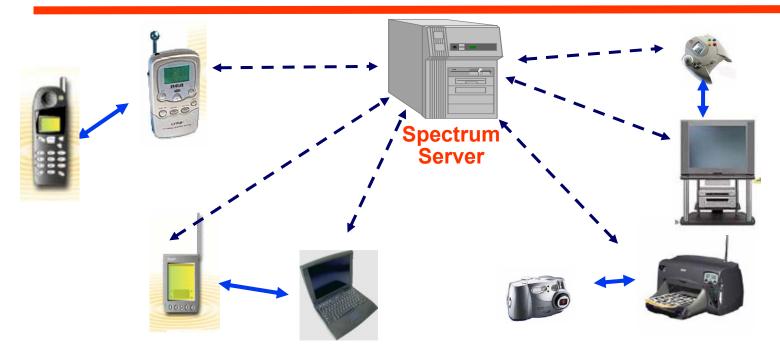
Open Access Needs Radio Agility

- Require radios that can :
 - Discover
 - □ Cooperate
 - □ Self-Organize into hierarchical networks
- Agility needed at every protocol layer
- But cannot predict environments/applications
 The Answer? "Cognitive Radios"
- Optimization Perspective:
 - □ Enlarging the space of feasible solutions
 - ⇒ improved performance

Cognitive Radio: Modeling Issues

- Heterogeneous PHYs:
 - □ OFDM, UWB, FH, CDMA
- Is there a control channel?
- What are control actions?

A Simple Spectrum Server

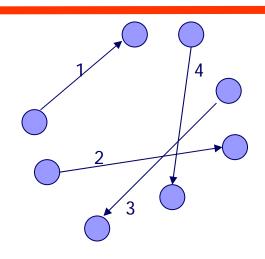


- Spectrum Server tells radios to turn OFF/ON
- Radios use best rate given signal & interference

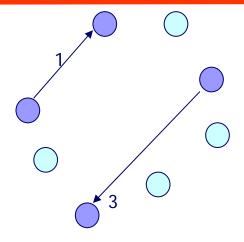
Simple System Model

- Users share a common frequency band
 - □ Orthogonal signal dimensions = time slots
 - □ Time domain scheduling is used for channelization
- Wireless network of L directed links
- Links follow ON-OFF transmission schedule over time slots
 - ☐ Use constant transmission power in the ON state
- Links employ interference-adaptive modulation/coding
 - □ Link rate in each time slot depends on interference from other active links
- Interference depends on the transmission mode
 - □ mode = subset of links that are ON simultaneously

Transmission modes



Transmission mode matrix *T:*



Transmission mode [1 0 1 0]

(one of 2⁴ possible modes)

$$t_{li} = 1$$
, if active link l is in mode i

= 0, otherwise.

Transmission Mode ⇒ **Data Rate**

- Example: Gaussian Interference, Single User Decoding
 - \square Each receiver measures its own SIR γ_{li} in every mode i:

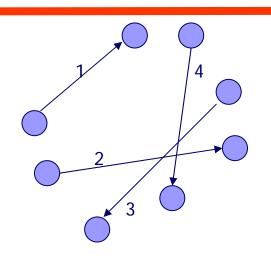
$$\gamma_{li} = \frac{t_{li}G_{ll}P_{l}}{\sum_{k \in \mathcal{E}, k \neq l} t_{ki}G_{lk}P_{k} + \sigma_{l}^{2}} \quad \begin{array}{c} \textbf{G}_{lk} = \text{link gain from} \\ \textbf{Tx } \textit{k to Rx } \textit{l} \end{array}$$

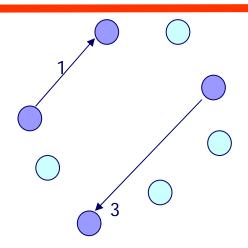
Achievable rate at link *l* in mode *i* is

$$c_{li} = \log(1 + \gamma_{li})$$

■ $L \times 2^L$ matrix C: column i = rates in mode i

Mode Matrix ⇒ **Rate Matrix**





network with 4 links

Transmission mode [1 0 1 0]

Rate matrix C =

[6.6]	0	0.01	0	0.56	0	0.01	0	2.05	0	0.01	0	0.49	0	0.01]
0]	6.6	0.06	0	0	1.86	0.06	0	0	0.97	0.06	0	0	0.77	0.06]
0]	0	0	6.6	1.0	1.86	0.83	0	0	0	0	0.04	0.04	0.04	0.04]
0]	0	0	0	0	0	0	6.65	0.32	0.05	0.04	0.40	0.19	0.05	0.04]

Spectrum Server = Mode Scheduler

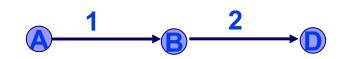
- Spectrum server specifies x_i = fraction of time mode i is ON
- Schedule = Stationary Distribution on Modes
- Average rate in link / is $r_l = \sum_i C_{li} X_i$
- In vector form, r = Cx
- Spectrum server specifies schedule x to:
 - Maximum sum rate of the network
 - ☐ Maximize the common rate on the links
 - □ Satisfy session flow requests
 - □ Fair scheduling

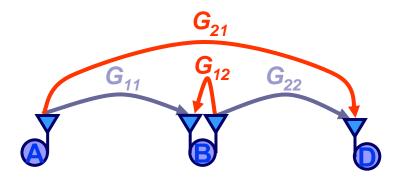
Comments on the Model

- Average link data rates r = Cx
- Any ergodic dynamic spectrum access policy ⇒ schedule x average link rates r = Cx
 - □ Centralized scheduling upperbounds distributed/dynamic solutions
- Tx/Rx technology assumptions are embedded in C

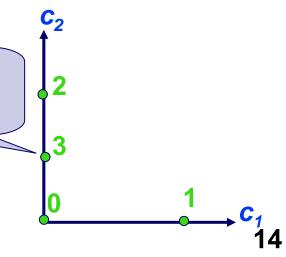
Technology Modeling Example Duplexing

- Duplex constraints in the rate matrix C
 - □ Node B: Link 1 RX, Link 2 TX
 - \Box $G_{12} = \infty$
 - □ In mode [1 1], link 1 gets rate $\varepsilon_0 \approx 0$, $c_0 < 1$



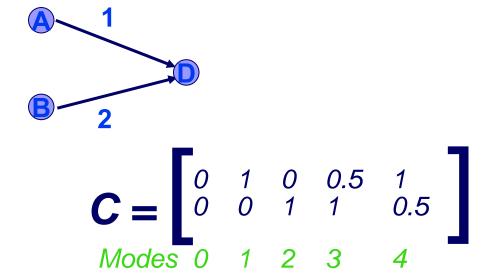


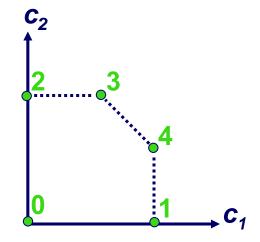
Both links ON: link 1 is useless, link 2 is crummy



Technology Modeling Example IT Multiaccess

- Nodes A and B send to D
- D employs joint decoding
 - Mode induced by sender code rates & successive decoding order at D





System model for end-to-end flows

- Wireless network with N nodes and L links
- K end-to-end sessions a session described by an origin-destination (OD) pair
- Set of *R* routes in the network
- End-to-end route incidence matrix for each flow k:

$$[A_k]_{lr} = 1$$
, if link l is part of route r
= 0, otherwise

■ Vector f_k – session k flows in the R routes

System model for end-to-end flows

- Aggregate rates through links $r = \sum_{k} A_{k} f_{k}$
- Maximum Sum Utility of the flows:

$$\begin{aligned} & \max & & \sum_k U_k(y_k) \\ & \text{subject to} & & y_k = \mathbf{1}^T \mathbf{f}_k, \quad k = 1, \dots, K, \\ & \mathbf{r} = \mathbf{C} \mathbf{x}, \\ & \mathbf{r} \geq \sum_k \mathbf{A}_k \mathbf{f}_k, \\ & \mathbf{given \ link \ rates} & & \mathbf{x} \geq \mathbf{0}, \quad \mathbf{1}^T \mathbf{x} = 1, \\ & & \mathbf{f}_k \geq 0, \quad k = 1, \dots, K. \end{aligned}$$

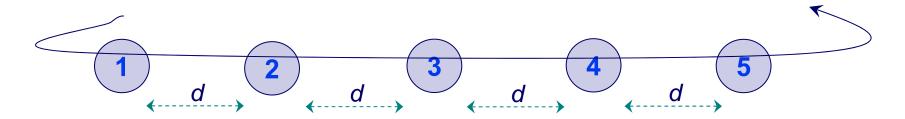
Cross Layer Optimization??

- PHY: Link rates c_{ii} for each mode i
- MAC: Schedule $x \Rightarrow$ Link rates r = Cx
- Network: Routes A_k
- Transport: Flows f_k

PHY
$$r = Cx \ge \sum_{k} A_{k} f_{k}$$
 Network Transport

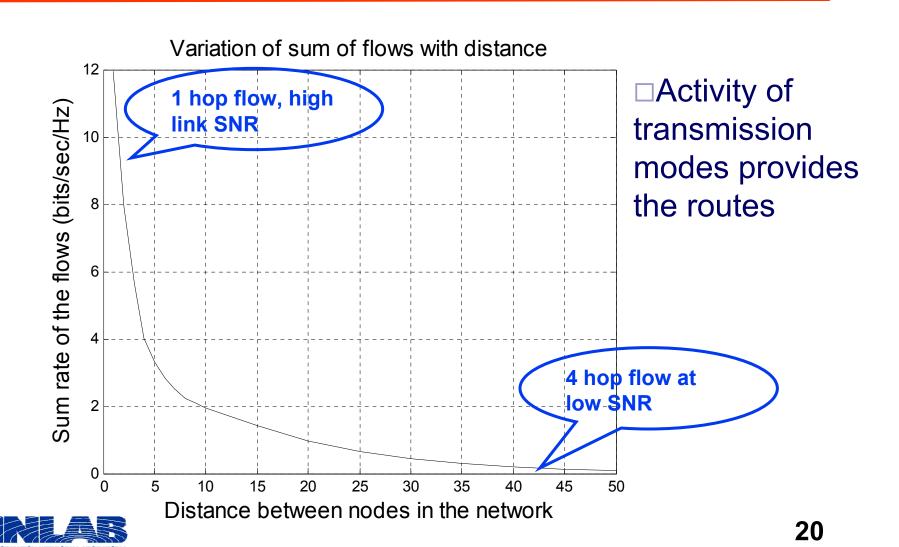
- ssues
 - ■Dual decomposition methods don't yield distributed solutions.
 - $\blacksquare x_i$ is not controlled locally by entity i
- [Bonald & Proutiere, WP-01]: Flow allocation f drives

Example 1: Max Flow scheduling on a linear network



- One flow, linear network, 5 nodes equally spaced
 - □ 10 directional links: (1,2), (1,3) ... (4,5)
 - □ 25 useful (half-duplex) transmission modes
 - □ 8 paths in the network
 - ☐ Routes are chosen to maximize the end-to-end flow

Example 1: Max Flow



Special Case: Session Flows = Link Rates

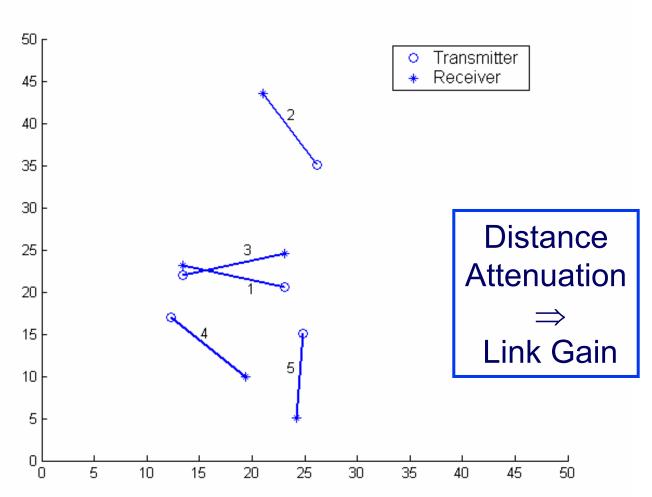
- **Each flow traverses one link.**
- Each link carries one flow.
- (Session flow) $y_k = r_k$ (link rate)

Max sum link-rate scheduling

- Each flow traverses one link. Each link carries one flow.
- Objective: To maximize the sum rate in the network with minimum rate constraints on each link
- Optimization problem can be posed as a linear program

$$egin{array}{ll} \max & \mathbf{1}^T \mathbf{r} \ & \mathbf{r} = \mathbf{C} \mathbf{x}, \ & \mathbf{r} \geq \mathbf{r}_{\min}, \ & \mathbf{1}^T \mathbf{x} = 1, \ & \mathbf{x} \geq \mathbf{0}. \end{array}$$

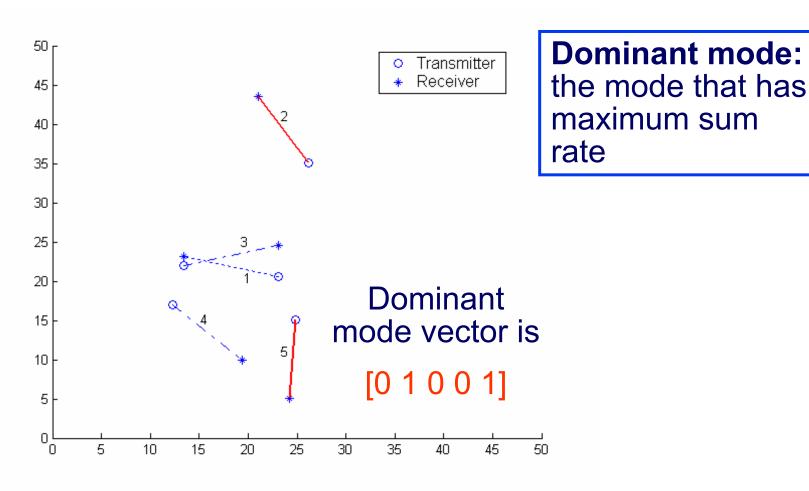
Example 2



Maximum sum rate solution

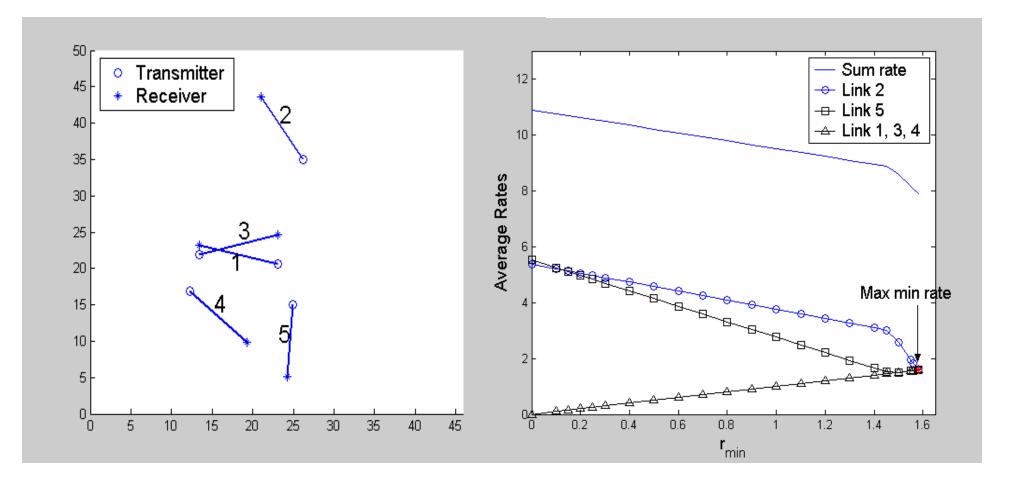
- When $r_{min} = 0$, the dominant mode is always scheduled
- Dominant mode the mode corresponding to the maximum column sum in C
- Leads to inherent unfairness in the schedule
 - □ links not active in the dominant mode are never scheduled

Example 2: Dominant mode



Maximum Sum rate - solution

- When each component $r_{min} > 0$, more than one mode is used
- The disadvantaged links are operated for just enough time to satisfy their rate requirement
- Most transmission modes are unused

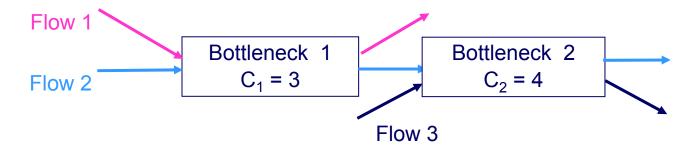


Example 2: As common r_{min} increases,

- □ the sum rate decreases
- □ Rates of dominant mode links decrease
- □ Rates of disadvantaged links increase

Max-min fairness

- Flow vector f is max-min fair if f_l cannot be increased while maintaining feasibility without decreasing $f_{l'}$ for some l' such that $f_{l'} \le f_l$
- Example from data networks:



MMF Rates:

Flow 1 = 1.5, Flow 2 = 1.5, Flow 3 = 2.5

Max-min flow schedule

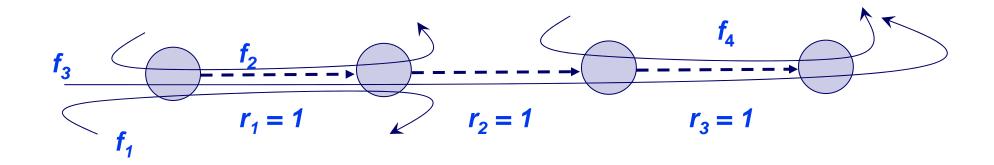
- What is the max-min fair flow schedule in our model?
- Step 1: Maximize the minimum flow y using the LP

subject to
$$y \leq \mathbf{1}^T \mathbf{f}_k, \quad k = 1, \dots, K,$$
 $\mathbf{r} = \mathbf{C}\mathbf{x},$ $\mathbf{r} \geq \sum_k \mathbf{A}_k \mathbf{f}_k,$ $\mathbf{x} \geq \mathbf{0}, \mathbf{1}^T \mathbf{x} \leq \mathbf{1},$ $\mathbf{f}_k \geq \mathbf{0}, \quad k = 1, \dots, K.$

Max-min fair schedule

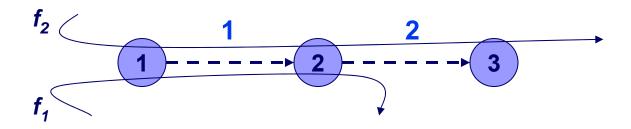
- Theorem: Non-zero link gains ⇒ equal rate flows are max-min fair
- Scheduler timeshares between bottlenecks to equalize the user flow rates
- The shared bandwidth is the bottleneck

Example 3 – Fair scheduling



- Linear network of four nodes, equal link distances
- Fixed Schedule (Equal link rates)
 - \square MMF rates are $(f_1, f_2, f_3, f_4) = (1/3, 1/3, 1/3, 2/3)$
- Mode scheduling of links ⇒ equal flows
 - \square MMF rates are $(f_1, f_2, f_3, f_4) = (0.37, 0.37, 0.37, 0.37)$

Example 4: Max-min fair flows (Fixed Mode Schedule)



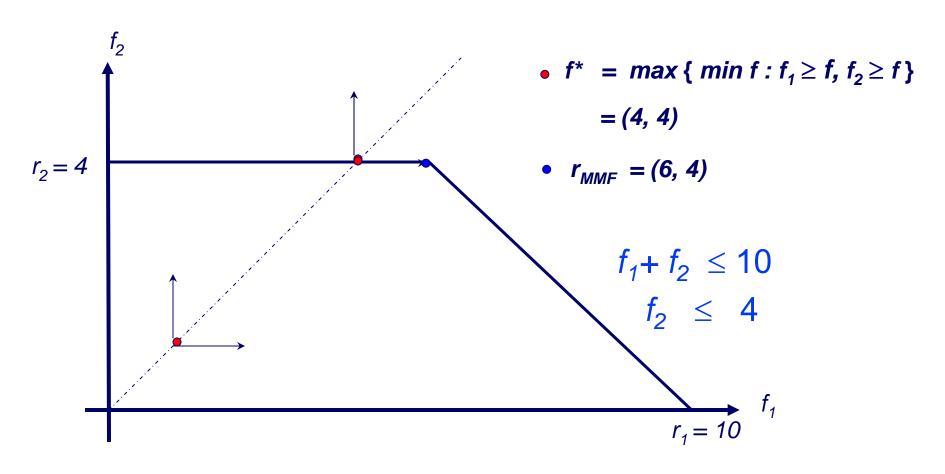
Spectrum Server Schedule:

Link Rates $r_1 = 10$, $r_2 = 4$

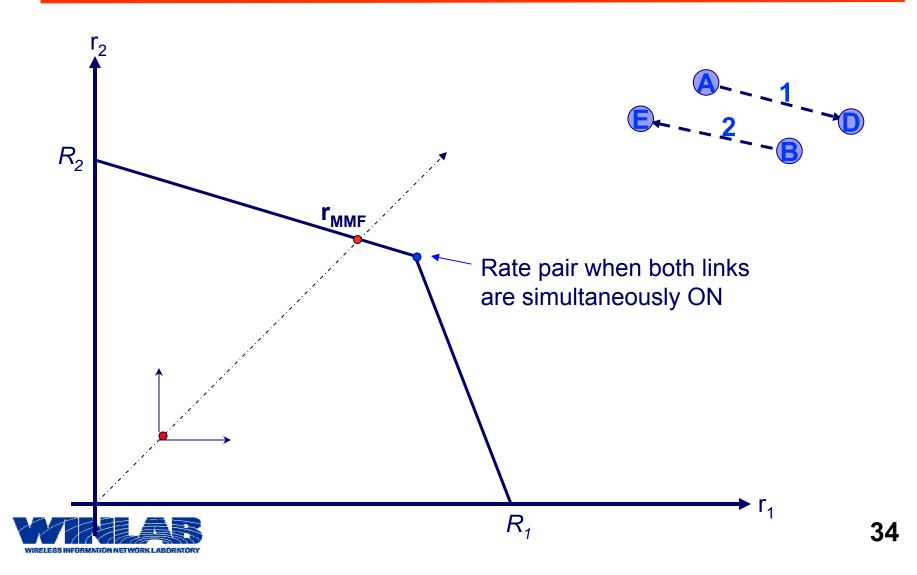
$$f_1 + f_2 \leq r_1$$

$$f_2 \leq r_2$$

Max-min fair rates (Example)



MMF rates for the interference model

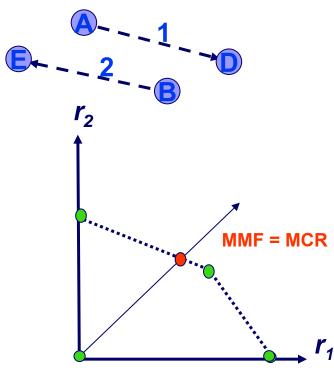


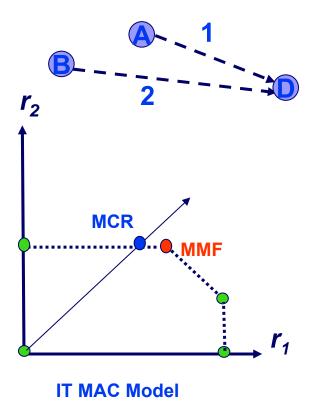
Max-min fair schedules

- "Equal rates are max-min fair" is a property of
 - ☐ flexible (centralized) link scheduling
 - □ Gaussian interference model
- [Radunovic & Le Boudec, Infocom 04]
 - □ **Solidarity Property:** Decrease in flow *i* enables **strict** increase of flow *j*
 - □ Solidarity ⇒ equality of max-min fair rates
- Solidarity holds for the Gaussian interference model.

Solidarity and the C matrix

- Solidarity depends on the PHY layer (*C* matrix)
 - □ In general, Max Common Rate (MCR) ≠ Max Min Fair (MMF) Rate





Concluding remarks

- Spectrum server computes schedule time sharing of transmission modes of the network
- Maximizing common rate over flows gives the maxmin fair flows for the interference model
- Centralized scheduler needs to know a lot of information
 - □ granularity and timeliness of measurements required by the Spectrum Server will be important
- Distributed solutions for finding good PHY layer modes?

