Delay-Optimal Scheduling in Bandwidth-Sharing Networks

Maaike Verloop CWI

Rudesindo Núñez-Queija
CWI & Eindhoven University of Technology

Sem Borst

Bell Labs, CWI & Eindhoven University of Technology

CISS 2006
Princeton University, March 22-24, 2006

Background & motivation

Bandwidth-sharing networks

 \bullet Network consists of several resources (links) indexed by set $\mathcal L$

 \bullet Resources shared by several classes of users indexed by set $\mathcal K$

• Class-k users require simultaneous capacity from subset of resources $\mathcal{L}_k \subseteq \mathcal{L}$

Find rate allocation $(r_k)_{k \in \mathcal{K}}$ that solves utility maximization problem (Kelly et al.):

$$\max \sum_{k \in \mathcal{K}} N_k U_k(r_k)$$

$$\sup \sum_{k \in \mathcal{K}_l} N_k r_k \leq C_l \qquad l \in \mathcal{L}$$

$$r_k \geq 0 \qquad k \in \mathcal{K}$$

with

- $U_k(\cdot)$: concave utility function
- N_k : number of class-k users
- C_l : capacity of resource l
- \mathcal{K}_l : classes that require capacity from resource l

 α -fair rate allocation policies (Mo & Walrand):

$$U(r) = \frac{r^{1-\alpha}}{1-\alpha}$$

- $\alpha \downarrow 0$: maximum throughput
- ' $\alpha = 1$ ': proportional fairness
- $\alpha = 2$: 'TCP'
- $\alpha \to \infty$: max-min fairness

Dynamic setting (Bonald, Massoulié, Roberts)

• Class-k users arrive as Poisson process of rate λ_k and have random service requirements with mean β_k

• Traffic load $\rho_k := \lambda_k \beta_k$

(Minimization of) total transfer delay might matter more to users than (maximization of) instantaneous rate utility

Finite expected transfer delay is first requirement

Stability condition:
$$\sum\limits_{k \in \mathcal{K}_l} \rho_k < C_l$$
 for all $l \in \mathcal{L}$

- Evidently necessary
- Sufficient in case of α -fair policies (Bonald & Massoulié, De Veciana, Lee & Konstantopoulos)

How close to optimal are α -fair policies in terms of transfer delay and user-perceived throughput?

Objectives

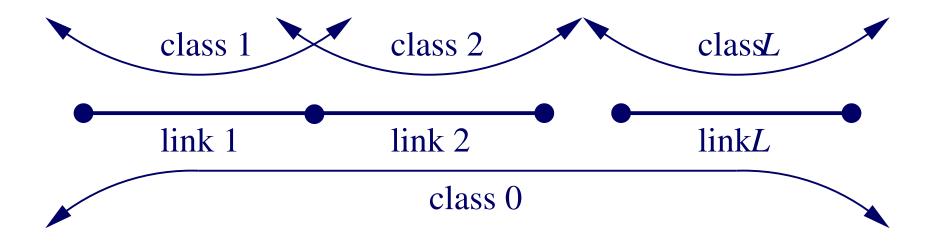
- Identify non-anticipating scheduling discipline that minimizes mean transfer delay
- Compare with α -fair policies to assess potential scope for improvement

Implementation issues need to be considered as well

Model description

- ullet Linear network with L links, each of unit capacity
- Network is offered traffic from L+1 flow classes
- Class-k flows arrive as Poisson process of rate λ_k and have exponentially distributed service requirements with mean $1/\mu_k$
- Traffic load $\rho_k := \lambda_k/\mu_k$

Model description (cont'd)



- ullet Class-0 flows require capacity from all L links simultaneously
- Class-l flows require capacity from link l only, $l=1,\ldots,L$

Delay minimization

Suppose that $\mu_0 \leq \mu_l$ for all $l = 1, \ldots, L$

Consider policy π_0 that gives preemptive priority to classes $1, \ldots, L$ over class $\mathbf{0}$

Denote by $s_k(t)$ capacity allocated to class k at time t

Policy π_0 maximizes total instantaneous service completion rate $\sum\limits_{k=0}^L \mu_k s_k(t)$

Stability condition for class 0:

$$\rho_0 < \mathbb{P}\{N_1 = 0, N_2 = 0, \dots, N_L = 0\} = \prod_{l=1}^L \mathbb{P}\{N_l = 0\} = \prod_{l=1}^L (1-\rho_l)$$

Above criterion more stringent than $\rho_0 + \rho_l < 1$ for all $l = 1, \dots, L$

Policy π_0 could unnecessarily cause instability, and hence cannot be optimal

Reflects that policy π_0 fails to be work-conserving

Shortest Remaining Processing Time first (SRPT) and Least Attained Service first (LAS) strategies involve similar instability issues

Two policies will play key role

- Policy π^* gives preemptive priority to class 0 over classes $1, \dots, L$
- Policy π^{**} serves all classes $1, \ldots, L$ simultaneously whenever possible, and gives preemptive priority to class 0 otherwise

By construction, both policies utilize full capacity whenever possible: $s_0(t) + s_l(t) = 1$ whenever $N_0(t) + N_l(t) > 0$

Thus, both policies maximize work depletion rate and minimize workload at each link (work conservation)

For certain values of μ_k , either policy π^* or π^{**} additionally maximizes total instantaneous service completion rate

In those cases, either policy π^* or π^{**} is optimal

In remaining cases, trade-off occurs between maximizing work depletion rate and maximizing service completion rate

Optimal policy then has more complicated structure

Case I:
$$\mu_0 \ge \sum_{l=1}^L \mu_l$$

Policy π^* gives preemptive priority to class 0 over classes $1,\dots,L$

- minimizes workload at each link
- maximizes total instantaneous service completion rate

Policy π^* stochastically minimizes total number of users $\sum\limits_{k=0}^L N_k(t)$ at any point in time

Proof sketch:

Work conservation:

$$W_0^*(t) + W_l^*(t) \le_{st} W_0^{\pi}(t) + W_l^{\pi}(t)$$

for any policy π

Priority to class-0 users:

$$N_0^*(t) \leq_{\mathsf{st}} N_0^\pi(t)$$

for any policy π

Adding inequalities, taking expectations, noting $\mathbb{E}\{W_k(t)\}=$

$$\mathbb{E}\{N_k(t)\}/\mu_k$$
, and invoking $\mu_0 \geq \sum\limits_{l=1}^L \mu_l$ yields

$$\sum_{k=0}^{L} \mathbb{E}\{N_k^*(t)\} \le \sum_{k=0}^{L} \mathbb{E}\{N_k^{\pi}(t)\}$$

for any policy π

Delay calculation for policy π^*

$$\mathbb{E}\{N_0^*\} = \frac{\rho_0}{1 - \rho_0}$$

$$\mathbb{E}\{N_l^*\} = \mu_l \mathbb{E}\{W_l^*\}
= \mu_l (\mathbb{E}\{W_0\} + \mathbb{E}\{W_l^*\}) - \mathbb{E}\{W_0^*\})
= \mu_l \left(\frac{\lambda_0/\mu_0^2 + \lambda_l/\mu_l^2}{1 - \rho_0 - \rho_l} - \frac{\lambda_0/\mu_0^2}{1 - \rho_0}\right)
= \frac{\rho_l}{1 - \rho_0} \frac{1 - \rho_0 (1 - \mu_l/\mu_0)}{1 - \rho_0 - \rho_l}$$

$$\mathbb{E}\{N^*\} = \sum_{k=0}^{L} \mathbb{E}\{N_k^*\} = \frac{\rho_0}{1 - \rho_0} + \sum_{l=1}^{L} \frac{\rho_l}{1 - \rho_0} \frac{1 - \rho_0(1 - \mu_l/\mu_0)}{1 - \rho_0 - \rho_l}$$

Comparison with proportional fair allocation

$$\mathbb{E}\{N_l^{PF}\} = \frac{\rho_l}{1 - \rho_0 - \rho_l}$$

$$\mathbb{E}\{N_0^{PF}\} = \frac{\rho_0}{1 - \rho_0} \left(1 + \sum_{l=1}^{L} \frac{\rho_l}{1 - \rho_0 - \rho_l} \right)$$

$$\mathbb{E}\{N^{PF}\} = \sum_{k=0}^{L} \mathbb{E}\{N_k^{PF}\} = \frac{\rho_0}{1 - \rho_0} + \sum_{l=1}^{L} \frac{\rho_l}{1 - \rho_0 - \rho_l}$$

$$\Delta = \mathbb{E}\{N^{PF}\} - \mathbb{E}\{N^*\} = \frac{\rho_0}{1 - \rho_0} \sum_{l=1}^{L} \frac{\rho_l}{1 - \rho_0 - \rho_l} (1 - \frac{\mu_l}{\mu_0})$$

Note that
$$\Delta\uparrow\frac{\rho_0}{1-\rho_0}\sum\limits_{l=1}^L\frac{\rho_l}{1-\rho_0-\rho_l}=\mathbb{E}\{N_0^{PF}\}-\mathbb{E}\{N_0^*\}$$
 as $\mu_0\to\infty$

Case II:
$$\sum_{l=1}^{L} \mu_l - \mu_{l^*} \le \mu_0 \le \sum_{l=1}^{L} \mu_l$$
, with $l^* := \arg\min_{l=1,...,L} \mu_l$

Policy π^{**} serves all classes $1, \ldots, L$ simultaneously whenever possible, and gives preemptive priority to class 0 otherwise

- minimizes workload at each link
- maximizes total instantaneous service completion rate

Policy π^{**} stochastically minimizes mean total number of users $\sum\limits_{k=0}^L \mathbb{E}\{N_k(t)\}$ at any point in time

Proof sketch:

Work conservation:

$$W_0^{**}(t) + W_l^{**}(t) \leq_{\text{st}} W_0^{\pi}(t) + W_l^{\pi}(t)$$

for any policy π

In addition, at every point in time, there are some $i \neq j$ such that

$$W_0^{**}(t) + W_i^{**}(t) + W_j^{**}(t) \le_{st} W_0^{\pi}(t) + W_i^{\pi}(t) + W_j^{\pi}(t)$$

for any policy π

Adding inequalities, taking expectations, noting that $\mathbb{E}\{W_k(t)\}=$

$$\mathbb{E}\{N_k(t)\}/\mu_k$$
, and invoking $\sum\limits_{l=1}^L \mu_l - \mu_{l^*} \leq \mu_0 \leq \sum\limits_{l=1}^L \mu_l$ yields

$$\sum_{k=0}^{L} \mathbb{E}\{N_k^{**}(t)\} \le \sum_{k=0}^{L} \mathbb{E}\{N_k^{\pi}(t)\}$$

for any policy π

Remaining cases:
$$\mu_0 \leq \sum_{l=1}^{L} \mu_l - \mu_{l^*}$$

Suppose that
$$N_{l^*}(t) = 0$$
 and $N_l(t) > 0$ for all $l \neq l^*$

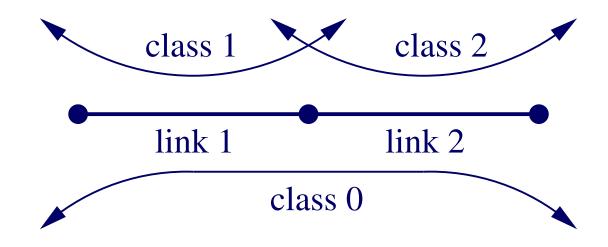
Trade-off arises

- Serving class 0 maximizes total work depletion rate
- Serving all other classes (except l^*) maximizes total instantaneous service completion rate

Optimal policy has complicated structure

Delay optimization (cont'd)

Consider network with L=2 links



- $\mu_0 \ge \mu_1 + \mu_2$: policy π^* is optimal
- $\mu_1, \mu_2 \le \mu_0 \le \mu_1 + \mu_2$: policy π^{**} is optimal (with $\mu_0 = \mu_1 = \mu_2$ as important special case)
- $\mu_0 \le \mu_1$: serve classes 1 and 2 when possible; when $N_2(t) = 0$, serve class 0 or 1 (switching curve)

Switching curve

Switching curve may be approximated using fluid analysis

min
$$\int_{t=0}^{\infty} (x_0(t) + x_1(t) + x_2(t)) dt$$
 sub
$$\frac{dx_k(t)}{dt} = \lambda_k - \mu_k s_k(t) \qquad k = 0, 1, 2$$

$$s_0(t) + s_l(t) \le 1 \qquad l = 1, 2$$

$$x_k(t) \ge 0 \qquad k = 0, 1, 2$$

$$x_k(0) = y_k \qquad k = 0, 1, 2$$

Switching curve (cont'd)

Assume $\mu_0 \leq \mu_1$, $\rho_1 \leq \rho_2$



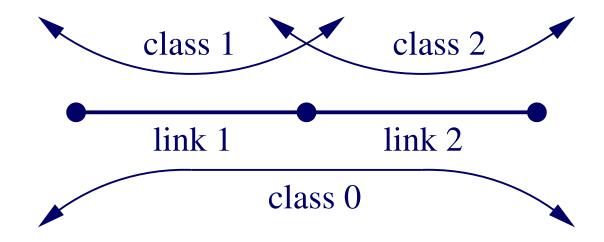
When $x_2(t) = 0$ optimal actions characterized by linear switching curve

•
$$\mu_0 \le \mu_1, \mu_2$$
: $x_1 = \frac{\rho_2 - \rho_1}{1 - \rho_0 - \rho_2} x_0$

•
$$\mu_2 \le \mu_0 \le \mu_1$$
: $x_1 = \frac{\mu_1}{\mu_1 + \mu_2 - \mu_0} \frac{\mu_2}{\mu_0} \frac{\rho_2 - \rho_1}{1 - \rho_0 - \rho_2} x_0$

Numerical experiments

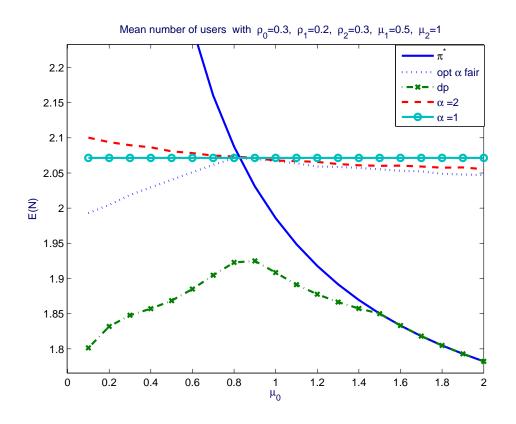
Consider network with L=2 links



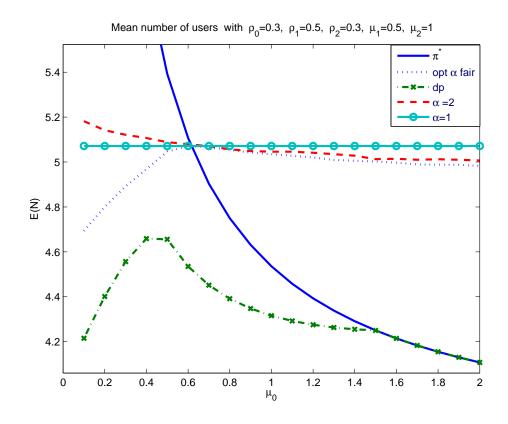
Comparison of

- Optimal policy (using dynamic programming)
- Heuristic policy (based on fluid analysis)
- Optimal α -fair policy

Numerical experiments (cont'd)



Numerical experiments (cont'd)



Conclusions

Optimal policy achieves modest performance improvement over α -fair policies

Performance of α -fair policies fairly insensitive to value of α , provided α is not too small

Heuristic policy based on fluid analysis provides near-optimal performance

Disclaimers

Only considered scheduling across classes with different routes

Standard size-based scheduling across classes with different routes can cause instability

Size-based scheduling within routes may however still produce gains

Preliminary results indicate that these gains can be substantial and arbitrarily large in heavy-traffic conditions