Pulp Mill Integrated Gasification-Based Liquid Biofuels Production

Eric D. Larson
Princeton Environmental Institute
Princeton University, New Jersey
elarson@princeton.edu

with
Stefano Consonni, Politecnico di Milano
Ryan E. Katofsky, Navigant Consulting, Inc.
Kristiina Iisa and W. James Frederick, Jr., Georgia Institute of Technology

TAPPI International Conference on Renewable Energy
Atlanta, GA
10-11 May 2007

Synthesis of Liquid Fuels from Synthesis Gas (CO+H₂)

- Fuel product (vapor) + unreacted syngas
- Disengagement zone
- Catalyst powder slurried in oil
- Steam
- Cooling water
- Synthesis gas (CO + H₂)
- Catalyst

Liquid-Phase Synthesis
P = 50-100 atm.
T = 200-300°C

catalyst

CH₃OCH₃
CH₃OH
CₙH₂n₊₂
(depending on catalyst)
Gasification-Based Liquid Fuels

Fischer-Tropsch Liquids (FTL)
- Synthetic crude refinable to zero-sulfur, high-cetane, low-particulate diesel blendstock and gasoline blendstock.
- Large global investments in gas-to-liquids GTL (e.g., Qatar, Nigeria)
- Growing investments in coal-to-liquids, CTL (China, USA).
- Initial commercial investment in biomass-to-liquids, BTL (Germany)

Dimethyl Ether (DME) (first cousin of methanol)
- Propane substitute/blendstock or zero-S, zero-PM, high-cetane diesel fuel.
- Huge commercial investments in DME and methanol from coal in China;
- Growing investments in DME from gas in Iran, China, and (as buyer) Japan;
- Swedish interest in DME from biomass.

Mixed alcohols (MA)
- Mixture of ethanol and higher alcohols as a gasoline blendstock.
- No commercial synthesis technology available today.
- Demonstrated catalyst performance (modified methanol or modified FTL catalysts) does not yet approach MeOH or FTL catalyst performance.
- Interest exclusively in U.S.A., driven largely by policy emphasis on ethanol.

Bioenergy in the Kraft Pulp Industry

- United States kraft pulp industry generates and uses over 1.5 quads/year of bioenergy: ~80% black liquor and ~20% woody residues.
- Fleet of Tomlinson black liquor boilers is aging and approaching retirement.

- Tough global competition for northern-hemisphere pulp industry ➔ Diversify to stay competitive, e.g., fuels/chemicals production?
- Window of opportunity for introducing gasification/biorefining.
Reference 2010 Kraft Pulp/Paper Mill

Same reference mill as in 2003 BLGCC study:
- Uncoated freesheet (65% HW, 35% SW), Southeast USA
 - 1,580 metric t/d unbleached pulp rate (bone dry)
 - 1,725 metric t/d paper rate (machine dry).
- Process steam use for projected state-of-art 2010 mill.
- Pulping technology adopted
 - Conventional kraft with Tomlinson chemical recovery.
 - Polysulfide with gasification chemical recovery.

Power/fuels/recovery area:
- 6 x 10^6 lbs/day black liquor solids (2721 metric t/d) with conventional kraft; 5.4 x 10^6 lbs/day with polysulfide.
- Hog fuel from pulpwood + purchased residues if needed.
- Delivers all mill process steam and some electricity.

Pulp Mill-Integrated Biorefining

Pressurized, high-temperature, O_2-blown (Chemrec) black liquor gasifier adopted in our biorefinery designs:
- Pilot-scale (20 tpd BLS) pressurized gasifier tests ongoing in Sweden since mid-2006.
- Commercial demo under planning for implementation by 2010 in Sweden.
- American company (VantagePoint Venture Partners) is major owner.
7 Detailed Biorefinery Designs Developed

Technology in Our Biorefinery Designs

<table>
<thead>
<tr>
<th>Technology</th>
<th>Status*</th>
<th>FTa</th>
<th>FTb</th>
<th>FTc</th>
<th>DMEa</th>
<th>DMEb</th>
<th>DMEc</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Liquor Gasification Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrained flow gasifier Quench O₂ feed</td>
<td></td>
<td>Pilot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woody Biomass Conversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid-bed gasifier Syngas cooler</td>
<td>Pilot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot gas filter Quench cleanup O₂ feed Boiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S Capture and Recovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectisol® Selexol® Claus/SCOT</td>
<td>Com</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Synthesis Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slurry bed reactor Fixed-bed reactor Syngas recycle</td>
<td>Com</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas turbine Back pressure ST Condensing ST</td>
<td>Com</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Com = commercially-offered; Pilot = Demonstrated at pilot scale; Lab = Demonstrated in Laboratory
Overall Energy In and Out

“Nth Plant” Performance Predictions

<table>
<thead>
<tr>
<th>Energy Inputs</th>
<th>Tomlinson</th>
<th>BLGCC</th>
<th>FTa</th>
<th>FTb</th>
<th>FTC</th>
<th>DMEa</th>
<th>DMEb</th>
<th>DMEc</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black liquor dry solids, kg/s</td>
<td>31.5</td>
<td>28.5</td>
<td>28.5</td>
<td>28.5</td>
<td>28.5</td>
<td>28.5</td>
<td>28.5</td>
<td>28.5</td>
<td>28.5</td>
</tr>
<tr>
<td>Dry solids fraction, %</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Total black liquor, MW t LHV</td>
<td>393</td>
<td>351</td>
<td>351</td>
<td>351</td>
<td>351</td>
<td>351</td>
<td>351</td>
<td>351</td>
<td>351</td>
</tr>
<tr>
<td>Total wood residuals, kg/s</td>
<td>7.12</td>
<td>19.2</td>
<td>52.0</td>
<td>62.2</td>
<td>16.2</td>
<td>30.7</td>
<td>15.7</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>Purchased wood residuals, kg/s</td>
<td>7.74</td>
<td>54.0</td>
<td>54.0</td>
<td>54.0</td>
<td>54.0</td>
<td>54.0</td>
<td>54.0</td>
<td>54.0</td>
<td></td>
</tr>
<tr>
<td>Lime kiln fuel oil, MW t LHV</td>
<td>31.1</td>
<td>35.9</td>
<td>35.9</td>
<td>35.9</td>
<td>35.9</td>
<td>35.9</td>
<td>35.9</td>
<td>35.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power/Recovery/Refinery Outputs</th>
<th>Tomlinson</th>
<th>BLGCC</th>
<th>FTa</th>
<th>FTb</th>
<th>FTC</th>
<th>DMEa</th>
<th>DMEb</th>
<th>DMEc</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT crude or DME, MW t LHV</td>
<td>-</td>
<td>112.0</td>
<td>112.0</td>
<td>343.0</td>
<td>168.0</td>
<td>168.0</td>
<td>74.0</td>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td>Biomass syngas expander output, MWel</td>
<td>-</td>
<td>87.0</td>
<td>83.9</td>
<td>186.5</td>
<td>89.7</td>
<td>89.5</td>
<td>82.9</td>
<td>89.7</td>
<td></td>
</tr>
<tr>
<td>Total gross production, MWel</td>
<td>72.0</td>
<td>135.1</td>
<td>119.5</td>
<td>278.7</td>
<td>138.3</td>
<td>35.9</td>
<td>138.5</td>
<td>123.6</td>
<td></td>
</tr>
<tr>
<td>Recovery/power/biorefinery consumption, MWel</td>
<td>7.7</td>
<td>20.5</td>
<td>31.3</td>
<td>49.2</td>
<td>60.4</td>
<td>34.3</td>
<td>48.1</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>Mill demand, MWel</td>
<td>100.1</td>
<td>100.1</td>
<td>100.1</td>
<td>100.1</td>
<td>100.1</td>
<td>100.1</td>
<td>100.1</td>
<td>100.1</td>
<td></td>
</tr>
<tr>
<td>Net power available for export, MWel</td>
<td>-35.8</td>
<td>14.6</td>
<td>-12.4</td>
<td>128.8</td>
<td>-22.8</td>
<td>99.6</td>
<td>-12.3</td>
<td>-9.6</td>
<td></td>
</tr>
</tbody>
</table>

[Diagram of Power inputs and outputs, MW]

[Table of Energy Inputs and Power/Recovery/Refinery Outputs]

[Table of “Nth Plant” Performance Predictions]
Comparing Effective Liquid Fuel Yields

A biorefinery integrated with a pulp mill effectively requires much less biomass per unit of liquid fuel produced vs. "stand-alone" biofuel production.

The reason is that black liquor (and some biomass) are charged against services provided to the mill (chemical recovery, process steam and power) – not against liquid fuel.

“Nth Plant” Installed Capital Costs

- New Tomlinson boiler system: ~$140 million.
- New gasification-based biorefinery: $250-500 million.
$330 million incremental capital investment

$50/bbl Crude Oil Scenario (AEO '06 Reference Projection)

Electricity sale price: 5.3 c/kWh (without incentives)

Incentives examined:
- Excise Tax Credit (ETC): Equivalent to existing $0.51/gal for ethanol on energy basis.
- Investment Tax Credit (ITC): 20% gasification tax credit (under EPAct 2005).
- Production Tax Credit (PTC): $9/MWh for 10 years (on incremental electricity relative to Tomlinson).
- Renewable Energy Credit (REC): $20/MWh (e.g., under RPS or green credits). Applies only to incremental electricity.
- CO2 Credits: $25/metric ton CO2 applied to net reductions (including grid offsets and petroleum displaced).

Internal Rate of Return Analysis: FTc

Pulpmill Biorefinery Financial Performance

$50/bbl Crude Oil Scenario, without and with incentives
25-Year Fossil Energy Savings
Up to 16 quads, Mostly Petroleum

Cumulative (2010-2034) Fossil Energy Savings (Aggressive Market Penetration Scenario)

Notes:
• Transportation of the crude FT product to the oil refinery included in FT cases.
• Vehicle end case FT cases assume FT gasoline blend in gasoline engines and FT diesel blend in CIDI engines.
MA case assumes low-level blend with gasoline.

U.S. Pulp/Paper Industry Technical Potential for Biofuel Production in 2034
(billion gallons per year ethanol equivalent)

• FT configurations: 5 to 14 billion gal/yr
• DME configurations: 3 to 7 billion gal/yr
• For comparison:
 • 2005 corn ethanol production: 4 billion gallons
 • Latest administration goal: 35 billion gallons in 2017
Final Comments

- Pulpmill-integrated Nth-plant biorefinery economics are favorable due to integration → capital cost shared with mill and low effective feedstock costs.
 - Production cost of FT syncrude or of DME ranges from $0.7 to $1.3 per gallon ethanol equivalent.
- Most needed technology is already commercial (in other industries), gasification is not (yet) off-the-shelf, so there are risks for the 1st or 2nd full-scale biorefinery.
- How to get started?
 - Woody biomass gasification for IGCC-electricity and/or liquid fuels, and/or
 - Partial BLG (Weyerhaeuser New Bern model).
 - Partnership with energy-industries and government to help manage risk and also bring in energy-industry competences.

Thank you!

Steering Committee
- Craig Brown/Del Raymond – Weyerhaeuser
- Theo Fleisch/Mike Gradassi – BP
- Paul Grabowski – U.S. Department of Energy
- Jennifer Holmgren – UOP
- Tom Johnson – Southern Company
- Mike Pacheco – National Renewable Energy Laboratory
- Steve Kelley – North Carolina State University
- Lori Perine – American Forest & Paper Association
- David Turpin – MeadWestvaco

Additional Resource Persons
- Ron Reinsfelder – Shell Global Solutions
- Gord Homer – Air Liquide

Many Others!

Primary funding from
- U.S. Department of Energy, Office of the Biomass Program
- American Forest and Paper Association
- Georgia Tech/IPST Gasification and Biorefinery Development Program
www.princeton.edu/~energy

elarson@princeton.edu