Contest prompts 'thinking about thinking'

Steven Schultz


Princeton neuroscientist John Hopfield and a colleague created the "sand mouse," a computer model of a mouse brain that recognizes spoken words. The Web site for a contest encouraging other researchers to figure out the principles behind the simulation received hits from thousands of visitors.


Concluding an unusual intellectual contest, a Princeton neuroscientist has revealed the principles behind a computer model of a mouse brain capable of recognizing spoken words.

John Hopfield created the simulation several months ago based on a theory he developed about how the brain interprets sensory perceptions, from touching to hearing. Hopfield did not, however, publish his insights immediately. Instead, he made the simulation available on a Web site and, in September, issued a challenge to colleagues to deduce the principle behind it.

"We wanted to provoke neuroscientists into thinking about thinking," said Hopfield, who developed the brain simulation and contest in collaboration with Carlos Brody of New York University.

Hopfield and Brody brought the contest to a conclusion on Dec. 14, announcing a first-place winner from Cambridge University and a second-place winner from the California Institute of Technology. The two described the principle in detail in a paper to be published later this winter in the Proceedings of the National Academy of Sciences.

The question behind Hopfield's challenge is a critical one for neuroscience: How does the brain recognize patterns in the sensory inputs it receives? The problem is particularly difficult for inputs that arrive over a period of time, such as spoken words or the sensation of touching a familiar object.

In his answer, based on years of investigation, Hopfield concluded that performing such feats requires brain cells to be very sensitive to the timing with which they fire off electrical signals to one another. The conventional view has been that networks of neurons respond only to broad differences in firing patterns -- a slow series of electric spikes means one thing and a quick burst means another.

Hopfield noted such a system is time consuming -- it requires several signals to make a good reading just as it takes 10 or 15 seconds to take a person's pulse. If neurons could respond to the timing of individual spikes rather than just averages of many spikes, they could perform faster and more sophisticated calculations, he reasoned.

Hopfield and Brody used this insight to create a computer program that models sensory perceptions in the brain. Their highly simplified brain contains only 800 neurons compared to the billions in a human or mouse brain. Yet after a single instance of saying the word "one" into a microphone, the model was able to make reliable distinctions between subsequent readings of the same word and samples of other words, even words that sound very similar. The device was able to recognize the word "one" even when it was masked by extraneous noise or when it was said quickly or slowly.

Although there is no direct evidence that Hopfield's model depicts what actually happens in human brains or those of animals, he believes it is likely to be very close. "I think we are going to find that the way this simulated brain computes is an example of the way a whole lot of real organisms compute," he said.

For one thing, he said, all the "parts" of the simulated brain are modeled after actual biological entities observed in real brains. "It doesn't require any new hardware and it doesn't require any gimmicks in the hardware," he said.

Also, the system replicates and explains results from previous experiments on human subjects monitored by an electroencephlogram (EEG). Scientists had observed that when subjects performed certain types of decision-making, unique "signatures" appeared in the EEG readouts. The same signatures would emerge from a brain that is wired using Hopfield's principles, he said.


Hopfield dubbed the simulated organism the Mus silicium or "sand mouse" and posted it to the Web at /~moment.Visitors to the site had access to a host of "experimental" data about the organism's anatomy and electrophysiology. They could even run their own experiments by submitting sound files and observing the results.

The first researchers to deduce the principles behind the simulation were in a group led by David MacKay of Cambridge University. Second place went to Benjamin Rahn, a graduate student at the California Institute of Technology. "Both of them clearly showed how a deductive process could lead to the answer, and only to this answer," said Brody.

The winners each received $500 and a Handspring Visor handheld computer signed by Jeff Hawkins, inventor of the Palm Pilot and founder of both Palm Computing Inc. and Handspring Inc. Hawkins has long been interested in the brain and volunteered to fund the prizes. The runners-up each received $200 and a Visor.

Hopfield emphasized that beyond the fun of the contest, he and Brody had a serious objective in issuing their challenge. Too few biologists, he said, attempt to deduce broad biological principles from the experimental facts at hand. Indeed the constant quest for new data can distract researchers from the important job of fitting the facts together in a coherent picture.

"When you are trying to answer a question, you either think about the facts you have or you go out and get new ones," he said. "The temptation always is to go out and get new facts, but you may have what you need to solve the problem right away."

If the response to the contest is any measure, Hopfield and Brody appear to have made their point. When a description of Hopfield's challenge received national publicity in October, Hopfield's site had hits from 17,000 more visitors over the following week, with 4,000 people downloading the research paper describing the sand mouse experiments.

"We are delighted," said Hopfield. "We had no idea that so many people would be interested in a scientific paper."

"We expected to chiefly engage computational neuroscientists," said Brody, "but judging by the Web hits and the e-mail we have received, we engaged a much more diverse group -- mathematicians, computer scientists, physicians, even high-school students. All these people have now been drawn into thinking hard about neurons and the brain."


January 8, 2001
Vol. 90, No. 13
previous   archives   next


Page 1
Contest prompts 'thinking about thinking'
Morrison wins humanities medal

Page 2
People / Briefs
Obituaries: Three faculty remembered / Staff
By the numbers: The Graduate School

Page 3
Writing program revamped
Graduate School's 100th anniversary gala dinner dance

Page 4-5
Calendar of events

Page 7
Two named Rhodes, Marshall scholars
Caution urged in new roundabout

Page 8
Nassau notes
Clothing drive nets 2,000 items for Hire Attire
King observance scheduled
Science on Saturday talks set
Learn about Russian literature via audiotape, e-mail and live lectures

The Bulletin is published weekly during the academic year, except during University breaks and exam weeks, by the Office of Communications, Princeton University, Princeton, NJ 08544. Permission is given to adapt, reprint or excerpt material from the Bulletin for use in other media.

Deadline. In general, the copy deadline for each issue is the Friday 10 days in advance of the Monday cover date. The deadline for the Bulletin that covers Jan. 29-Feb. 4 is Friday, Jan. 19. A complete publication schedule is available at deadlines or by calling (609) 258-3601.

Subscriptions. The Bulletin is distributed free to faculty, staff and students. Others may subscribe to the Bulletin for $24 for the academic year (half price for current Princeton parents and people over 65). Send a check to Office of Communications, Stanhope Hall, Princeton University, Princeton, NJ 08544.

Editor: Ruth Stevens
Staff writer: Yvonne Chiu Hays
Calendar editor: Carolyn Geller
Contributing writers: Marilyn Marks, Steven Schultz
Photographer: Denise Applewhite
Design: Mahlon Lovett, Laurel Masten Cantor
Web edition: Mahlon Lovett