## TEACHING

**GEO 423: Dynamic Meteorology (Spring)**

This course provides the rigorous introduction to the moving atmosphere needed to understand Earth's weather and climate. The fundamental forces of the atmosphere (pressure gradient, gravity, and Coriolis) and conservation laws (mass, momentum, energy) will be developed. Approximations relevant to Earth's large-scale circulation and regional-scale extreme events will be discussed. Important consequences of atmospheric turbulence will also be covered. Throughout, connections between dynamical equations and atmospheric observations will be strongly emphasized.

**GEO 430: Climate and the Terrestrial Biosphere (Odd Fall)**

Earth's climate is inextricably intertwined with the terrestrial biosphere. In this course, we will explore the key mechanisms that link climate (e.g., cloudiness, rainfall, and temperature) with the terrestrial biosphere (e.g., ecosystem composition, structure, and functioning), and how these mechanisms are altered by humans. We will review basic aspects of climate, surface energy balances, and terrestrial plant ecology, and then investigate feedbacks and forcings arising from biophysical properties of the land surface, biogeographical properties of ecosystems, deforestation, fires, increases in atmospheric CO2, and other factors.

**AOS 522: Inverse Methods: theory and applications (Even Fall)**

This course treats inverse problems from both theoretical and applied perspectives. Students learn to develop the necessary theory to pose, interpret, and solve inverse problems, focusing on topics including error characterization, linear and non-linear methods, approximations, Kalman filters, use of prior constraints, and observing system design. Concepts are illustrated with examples from the current literature on the Earth's carbon cycle.

**GEO 505: Fundamentals of the Geosciences I
**

A year-long survey, in sequence, of fundamental papers in the geosciences. Topics in 505 (Fall) include the origin and interior of the Earth, plate tectonics, geodynamics, the history of life on Earth, the composition of the Earth, its oceans and atmospheres, past climate. Topics in 506 (Spring) include present and future climate, biogeochemical processes in the ocean, geochemical cycles, orogenies, thermochronology, rock fracture and seismicity. A core course for all beginning graduate students in the geosciences.