Feeding potential for South Asia’s nuclear fire

The United States and India have agreed to the terms of a deal to exempt India from U.S. laws and international rules that for almost three decades have sought to prevent states that are not parties to the Nuclear Non-Proliferation Treaty from using commercial imports of nuclear technology and fuel to aid their nuclear weapons ambitions. In December, the United States and India signed legislation changing the relevant U.S. non-proliferation laws to make an exception for India. But to bring the U.S.-India deal into force also requires a decision by the Nuclear Suppliers Group (NSG) of countries. Since the Group works by consensus, each of the 45 NSG members (including Japan) must agree to change its rules and allow the U.S.-India deal, which claim to be strong non-proliferation advocates, like Japan, must decide if they want to go along with a deal that may make money for their own nuclear technology companies but would also bolster India’s nuclear weapons capabilities and push Pakistan to build up its nuclear arsenal.

From the perspective of the Indian nuclear establishment, the deal will help it realize its ambitions for a large nuclear modern power sector. The Nuclear Power Corporation of India Limited (NPCIL) is expected to have over 40,000 megawatts of nuclear power by the year 2020, and is on track to do so. Until the year 2020, India will seek to reduce its acute fuel shortfall for its existing nuclear reactors. Only after the U.S.-India deal was announced, an Indian official told the BBC, “The truth is we were desperate. We have nuclear fuel to last only until the end of 2008. If this agreement had not come through we might have to walk down our nuclear reactors and by extension our nuclear program,” the official said.

Several reactors are already running at reduced capacity. India is coming on the deal to allow it to import uranium for the reactors it plans to build in accordance with the agreement. However, importing uranium will free up much of India’s domestic uranium for its military program. The former head of India’s official National Security Advisory Board argued that “Given India’s uranium ore crust, it is to India’s advantage to categorize as many power reactors as possible as civilian ones to be refueled by imported uranium and contain much less fissile material than nuclear grade plutonium production reactors.”

As part of the deal, India’s government has offered to open some of its nuclear facilities for IAEA monitoring. But many facilities, including two reactors dedicated to making plutonium for nuclear weapons and nine power reactors, including a plutonium breeder reactor that is under construction, will be outside international safeguards. This agreement for the International Panel on Fissile Materials (an independent group of nuclear experts from 15 countries) has shown that all of these facilities could be used to add significantly to India’s stockpile of nuclear weapons.

India already has about 500 kilograms of reactor-grade plutonium, sufficient for roughly 100 nuclear warheads. It also has a stock of about 15 kilograms of enriched uranium. A stock of reactor-grade plutonium produced in the spent fuel of its power reactors would raise India’s arsenal of nuclear weapons. India’s plutonium stock, too, would be of a potential interest.

India would continue to operate its Bhabha reactor, adding about 20-25 kg a year—equivalent to four to five nuclear weapons a year to India’s stockpile. It has offered to shut down an older, smaller plutonium-production reactor in 2010 but there are plans to replace it with a larger reactor that could produce at least as much plutonium for weaponization.

India would also keep out of safekeeping an Prototype Fast Breeder Reactor which is scheduled to start in 2011, which is designed to produce more than as much plutonium and will produce weapons-grade plutonium. The reactors would result in a roughly four-fold increase in India’s current weapons plutonium production rate.

By substituting imports for domestic uranium and expanding existing uranium recycling efforts, India also might be able to produce up to 200 kg a year of weapons-grade plutonium.

Pakistan has expressed its fears about the U.S.-India nuclear deal. Pakistan’s National Command Authority (NCA), chaired by President Pervez Musharraf, has declared that “In view of the fact the U.S.-India agreement would enable India to produce a significant quantity of fissile material and nuclear materials from un safeguarded nuclear reactors, the NCA expressed firm resolve that our country would make an exception for India. Pakistan has expressed its fears about the U.S.-India nuclear deal. Pakistan’s National Command Authority (NCA), chaired by President Pervez Musharraf, has declared that “In view of the fact the U.S.-India agreement would enable India to produce a significant quantity of fissile material and nuclear materials from un safeguarded nuclear reactors, the NCA expressed firm resolve that our country would make an exception for India.”

This suggests that a dramatic acceleration in the nuclear arms race in South Asia may be triggered by this development in the nuclear arms race in South Asia. Such a development would be both dangerous and costly, and set back the efforts for peace and development in South Asia. The Resolution also calls upon the United Nations Security Council Resolution 1172 (26 June 1998) that mandates non-proliferation to South Asia to support the United Nations Security Council Resolution. They should try to strengthen the long standing international effort to end all production of highly enriched uranium and plutonium to support the United Nations Security Council Resolution. They should try to strengthen the long standing international effort to end all production of highly enriched uranium and plutonium to support the United Nations Security Council Resolution.

A first step would be for them to agree to the terms of a deal on an end to further production of fissile materials for purposes in South Asia.

Zia Mian is a research scientist with Princeton University’s Program on Science and Global Security, and directs the Project on Peace and Security in South Asia. M.V. Ramana is a physicist at the Center for International Security and Cooperation, Stanford University, and Frank von Hippel is professor of Public and International Affairs at Princeton University.