Skip over navigation

Program in Neuroscience

Director

Michael J. Berry, Co-Director

Elizabeth Gould, Co-Director

Executive Committee

Michael J. Berry, Molecular Biology, Princeton Neuroscience Institute

Matthew M. Botvinick, Psychology, Princeton Neuroscience Institute

Lisa M. Boulanger, Molecular Biology, Princeton Neuroscience Institute

Carlos D. Brody, Molecular Biology, Princeton Neuroscience Institute

Jonathan D. Cohen, Psychology, Princeton Neuroscience Institute

Lynn W. Enquist, Molecular Biology, Princeton Neuroscience Institute

Asif A. Ghazanfar, Psychology, Princeton Neuroscience Institute

Elizabeth Gould, Psychology, Princeton Neuroscience Institute

Michael S. Graziano, Psychology, Princeton Neuroscience Institute

Charles G. Gross, Psychology, Princeton Neuroscience Institute

Uri Hasson, Psychology, Princeton Neuroscience Institute

Barry L. Jacobs, Psychology, Princeton Neuroscience Institute

Sabine Kastner, Psychology, Princeton Neuroscience Institute

Mala Murthy, Molecular Biology, Princeton Neuroscience Institute

Yael Niv, Psychology, Princeton Neuroscience Institute

Kenneth A. Norman, Psychology, Princeton Neuroscience Institute

David W. Tank, Molecular Biology, Princeton Neuroscience Institute

Samuel S. H. Wang, Molecular Biology, Princeton Neuroscience Institute

Associated Faculty

William Bialek, Physics and Lewis-Sigler Institute for Integrative Genomics

Jonathan T. Eggenschwiler, Molecular Biology

Elizabeth R. Gavis, Molecular Biology

Alan Gelperin, Molecular Biology, Princeton Neuroscience Institute

Philip J. Holmes, Mechanical and Aerospace Engineering

Coleen T. Murphy, Molecular Biology, Lewis-Sigler Institute for Integrative Genomics

Nicholas B. Turk-Browne, Psychology


The Program in Neuroscience is offered by the Princeton Neuroscience Institute. The neuroscience certificate program is designed for undergraduates with strong interests in neuroscience who wish to pursue an interdisciplinary study of the brain in their senior independent work. The program encourages the serious study of molecular, cellular, developmental, and systems neuroscience as it interfaces with cognitive and behavioral research. Current neuroscience research examples at Princeton include: plasticity and timing-dependent learning rules at synapses, coincidence detection and computation in dendrites, adaptation and pattern detection in neural circuits, cellular and circuit mechanisms of short-term memory, sensory-motor transformations in the cerebral cortex, neural stem cells in the adult brain, viral infections of the nervous system, brain-imaging studies of cognitive functions such as attention and memory in human subjects, and mathematical and computational analysis of neural network function. 

The program offers a combination of courses and interdisciplinary research that meet the requirements of the molecular biology and psychology departments. Students majoring in other disciplines are also encouraged to enroll in the program. A course of study tailored to the requirements of their home department will be designed with the help of the program directors. In the past, students from a wide range of majors--including engineering, economics, chemistry, art history, English, and music--have successfully completed the neuroscience certificate program. Students in the neuroscience certificate program will be prepared to meet the entry requirements of graduate schools in neuroscience, as well as molecular biology or psychology. A certificate in neuroscience is awarded to students who successfully complete the program. Students who desire a more quantitative and computational focus in neuroscience, including those in the integrated sciences curriculum, can pursue the quantitative and computational neuroscience (QCN) track of the program as outlined below.

Admission to the Program

Students are admitted to the program once they have chosen their major and consulted with the program directors, who will assist them in selecting an adviser. The adviser will typically supervise the student's junior independent work; the student will identify an adviser for the senior thesis late in the junior year.

Program of Study

Students in the Program in Neuroscience develop, in consultation with their adviser, a course of study built upon their departmental concentration that consists of the curriculum listed below, plus junior and senior independent work in neuroscience. Program courses may not be taken Pass/D/Fail. 

Note: An asterisk indicates a one-time-only course or topic.

Prerequisites:

One year of calculus, preferably taken at Princeton:
MAT 101 or 103, and MAT 102 or 104 or ORF 245, or advanced placement credit. 

MOL 214 Introduction to Cellular and Molecular Biology or MOL 215 Quantitative Principles in Cell and Molecular Biology; or the integrated sciences curriculum (CHM/COS/MOL/PHY 231-4 as a freshman and CHM/COS/MOL/PHY 235-6 during the sophomore year)

Neuroscience Requirements:

NEU/PSY 258 Fundamentals of Neuroscience
NEU/PSY 259 Introduction to Cognitive Neuroscience
NEU/MOL 408/PSY 404 Cellular and Systems Neuroscience

In addition to these core courses, all students are expected to take at least two neuroscience electives. Students should consult the neuroscience certificate website for the list of neuroscience electives. In recognition that neuroscience is an interdisciplinary program whose excitement lies in new and changing areas at the interface of biology, psychology, and other related disciplines, alternative programs of study may be arranged at the discretion of the program directors and the Neuroscience Curriculum Committee.

Quantitative and Computational Neuroscience. Quantitative and computational neuroscience is a special track within the certificate in neuroscience program. It is designed for undergraduates who wish to pursue a quantitative approach to the study of brain function. Students must maintain a minimum B+ average in the required courses and the senior thesis. As is the case with the Program in Neuroscience certificate, graduates of the QCN track will be prepared to meet the entry requirements of graduate schools in neuroscience, as well as molecular biology or psychology; in addition, QCN students will have acquired quantitative data analysis, modeling, and programming skills. Students pursuing the QCN track will take either NEU/MOL 437 Computational Neuroscience, NEU/PSY 330 Introduction to Connectionist Models: Bridging between Brain and Mind, PSY/NEU 338 Animal Learning and Decision Making-Psychological, Computational and Neural Perspectives, OR APC/MAT 351 Models in Mathematical Neuroscience, AND either NEU 501B or NEU 502B From Molecules to Systems to Behavior. These are lab courses that will introduce students to a variety of techniques and concepts used in modern neuroscience. 

Junior and Senior Independent Research. Requirements for junior independent work are determined by each student's home department. A senior thesis in neuroscience is an important component of the neuroscience certificate program and is supervised by a faculty member affiliated with the program. For students concentrating in departments that make it impossible to do senior thesis research that fulfills both departmental and certificate program expectations, an additional research report will be required. This report must be co-advised by a faculty member in the neuroscience program. For all students, independent research topics can be laboratory or theoretical research projects, and must be approved in advance by the program directors, in consultation with faculty advisers. 

Certificate of Proficiency

Students who fulfill all the requirements of the program will receive a certificate in neuroscience upon graduation.


Courses


NEU 101 Neuroscience and Everyday Life (also MOL 110)   Spring STL

Acquaints non-science majors with classical and modern neuroscience. Lectures will give an overview at levels ranging from molecular signaling to cognitive science with a focus on the neuroscience of everyday life, from the general (love, memory, and personality) to the particular (jet lag, autism, and weight loss). The laboratory will offer hands-on experience in recording signals from single neurons, examining neural structures, and analysis of whole-brain functional brain imaging data. Two 90-minute lectures, one laboratory. S. Wang, A. Gelperin

NEU 258 Fundamentals of Neuroscience (also PSY 258)   Fall

An introduction to brain function, neuroscience, and physiological psychology. The first half will survey structure and function of the nervous system. The second half will deal in depth with selected problems in the neuroscience of motivation (e.g., appetite), emotion (e.g., addiction) and mental disorder (e.g., chronic depression). Appropriate for departmental and non-departmental students, particularly pre-medical, pre-psychology, and pre-neuroscience students. Two lectures, one preceptorial. A. Ghazanfar

NEU 259A Introduction to Cognitive Neuroscience (also PSY 259A)   Spring EC

An introduction to cognitive brain functions, including higher perceptual functions, attention and selective perception, systems for short- and long-term memory, language, cerebral lateralization, motor control, executive functions of the frontal lobe, cognitive development and plasticity, and the problem of consciousness. Major neuropsychological syndromes (e.g., agnosia, amnesia) will be discussed. Prerequisite: 258 or instructor's permission. Two 90-minute lectures, one preceptorial. M. Botvinick

NEU 259B Introduction to Cognitive Neuroscience (also PSY 259B)   Spring STL

An introduction to cognitive brain functions, including higher perceptual functions, attention and selective perception, systems for short- and long-term memory, language, cerebral lateralization, motor control, executive functions of the frontal lobe, cognitive development and plasticity, and the problem of consciousness. Major neuropsychological syndromes (e.g., agnosia, amnesia) will be discussed. Prerequisite: 258 or instructor's permission. Two 90-minute lectures, one three-hour laboratory. M. Botvinick

NEU 306 Memory and Cognition (see PSY 306)

NEU 330 Introduction to Connectionist Models: Bridging between Brain and Mind (also PSY 330)   Spring STL

A fundamental goal of cognitive neuroscience is to understand how psychological functions such as attention, memory, language, and decision making arise from computations performed by assemblies of neurons in the brain. This course will provide an introduction to the use of connectionist models (also known as neural network or parallel distributed processing models) as a tool for exploring how psychological functions are implemented in the brain, and how they go awry in patients with brain damage. Prerequisite: instructor's permission. Two 90-minute lectures, one laboratory. K. Norman

NEU 336 The Diversity of Brains (see PSY 336)

NEU 408 Cellular and Systems Neuroscience (also MOL 408/PSY 404)   Fall STN

A survey of fundamental principles in neurobiology at the biophysical, cellular, and system levels. Lectures will address the basis of the action potential, synaptic transmission and plasticity, local circuit computation, sensory physiology, and motor control. Prerequisites: MOL 214 or MOL 215, PSY 258, PHY 103-104, and MAT 103-104, or permission of instructor. Two 90-minute lectures, one preceptorial. M. Berry

NEU 410 Depression: From Neuron to Clinic (see PSY 410)

NEU 437 Computational Neuroscience (also MOL 437/PSY 437)   Not offered this year

Introduction to the biophysics of nerve cells and synapses, and the mathematics of neural networks. How can networks of neurons compute? How do we model and analyze data from neuroscientific experiments? Data from experiments running at Princeton will be used as examples (e.g., blowfly visual system, hippocampal slice, rodent prefrontal cortex). Each topic will have a lecture and a computer laboratory component. Prerequisite: MOL 410, or elementary knowledge of linear algebra, differential equations, probability, and basic programming ability, or permission of the instructor. Two 90 minute lectures, one laboratory. C. Brody