Skip over navigation

Program in Neuroscience

Director

Uri Hasson, Co-Director

H. Sebastian Seung, Co-Director

Executive Committee

Michael J. Berry, Molecular Biology, Princeton Neuroscience Institute

Matthew M. Botvinick, Psychology, Princeton Neuroscience Institute

Lisa M. Boulanger, Princeton Neuroscience Institute

Carlos D. Brody, Molecular Biology, Princeton Neuroscience Institute

Timothy J. Buschman, Psychology, Princeton Neuroscience Institute

Jonathan D. Cohen, Psychology, Princeton Neuroscience Institute

Nathaniel D. Daw, Princeton Neuroscience Institute, Psychology

Lynn W. Enquist, Molecular Biology, Princeton Neuroscience Institute

Asif A. Ghazanfar, Psychology, Princeton Neuroscience Institute

Elizabeth Gould, Psychology, Princeton Neuroscience Institute

Michael S. Graziano, Psychology, Princeton Neuroscience Institute

Uri Hasson, Psychology, Princeton Neuroscience Institute

Barry L. Jacobs, Psychology, Princeton Neuroscience Institute

Sabine Kastner, Psychology, Princeton Neuroscience Institute

Carolyn McBride, Ecology and Evolutionary Biology, Princeton Neuroscience Institute

Mala Murthy, Molecular Biology, Princeton Neuroscience Institute

Yael Niv, Psychology, Princeton Neuroscience Institute

Kenneth A. Norman, Psychology, Princeton Neuroscience Institute

Jonathan W. Pillow, Psychology, Princeton Neuroscience Institute

H. Sebastian Seung, Computer Science, Princeton Neuroscience Institute

David W. Tank, Molecular Biology, Princeton Neuroscience Institute

Samuel S. H. Wang, Molecular Biology, Princeton Neuroscience Institute

Ilana B. Witten, Psychology, Princeton Neuroscience Institute

Associated Faculty

William Bialek, Physics and Lewis-Sigler Institute for Integrative Genomics

Elizabeth R. Gavis, Molecular Biology

Alan Gelperin, Molecular Biology, Princeton Neuroscience Institute

Coleen T. Murphy, Molecular Biology, Lewis-Sigler Institute for Integrative Genomics

Joshua W. Shaevitz, Physics, Lewis-Sigler Institute for Integrative Genomics

Jordan A. Taylor, Psychology

Alexander T. Todorov, Psychology

Nicholas B. Turk-Browne, Psychology


The Program in Neuroscience is offered by the Princeton Neuroscience Institute. The neuroscience certificate program is designed for undergraduates with strong interests in pursuing an interdisciplinary study of the brain. The program encourages the serious study of molecular, cellular, developmental, and systems neuroscience as it interfaces with cognitive and behavioral research. Current neuroscience research examples at Princeton include: plasticity and timing-dependent learning rules at synapses, coincidence detection and computation in dendrites, adaptation and pattern detection in neural circuits, cellular and circuit mechanisms of short-term memory, sensory-motor transformations in the cerebral cortex, neural stem cells in the adult brain, viral infections of the nervous system, brain-imaging studies of cognitive functions such as attention and memory in human subjects, and mathematical and computational analysis of neural network function.

The program offers a combination of courses and interdisciplinary research that meet the requirements of the molecular biology and psychology departments. Students majoring in other disciplines are also encouraged to enroll in the program. A course of study tailored to the requirements of their home department can be designed with the help of the program directors. In the past, students from a wide range of majors -- including engineering, economics, chemistry, art history, English, and music -- have successfully completed the neuroscience certificate program. Students in the neuroscience certificate program will be prepared to meet the entry requirements of graduate schools in neuroscience, as well as molecular biology or psychology. A certificate in neuroscience is awarded to students who successfully complete the program.

Admission to the Program

Students are admitted to the program by filling out an enrollment form that can be found on our website.

Program of Study

Students in the Program in Neuroscience pursue a course of study built upon their departmental concentration that consists of the curriculum listed below, plus junior and senior independent work in neuroscience. Program courses may not be taken Pass/D/Fail.

Note: Independent Work will no longer be required beginning with the Class of 2017.

Prerequisites:

One year of calculus: MAT 103 and MAT 104
One semester of statistics in any department can be substituted for a semester of calculus
Higher math can also be substituted for calculus: MAT 201, 202, 203, or 204
Advanced placement credit for math is assessed according to the standards of the Math Department

Note: The math prerequisites will no longer be required beginning with the Class of 2017.

Neuroscience Requirements:

NEU201/PSY 258 Fundamentals of Neuroscience
NEU 202/PSY 259 Introduction to Cognitive Neuroscience

In addition to these two core courses, all students are expected to take at least four neuroscience electives. Students should consult the neuroscience certificate website for the list of neuroscience electives. In recognition that neuroscience is an interdisciplinary program whose excitement lies in new and changing areas at the interface of biology, psychology, and other related disciplines, alternative programs of study may be arranged at the discretion of the program directors and the Neuroscience Curriculum Committee.

Independent Work

Junior and Senior Independent Research

Independent research topics can be laboratory or theoretical research projects. All neuroscience certificate students must have their topic approved in advance by the program directors, in consultation with faculty advisers.

Juniors
Requirements for junior independent work are determined by each student's home department.

Seniors
A senior thesis in neuroscience is an important component of the neuroscience certificate program and is supervised by a faculty member affiliated with the Princeton Neuroscience Institute. For students concentrating in departments that make it impossible to do senior thesis research that fulfills both departmental and certificate program expectations, an additional research report will be required. This report must be co-advised by a faculty member affiliated with the Princeton Neuroscience Institute.

Note: Beginning with the Class of 2017 Independent Work is no longer be required.

Certificate of Proficiency

Students who fulfill all the requirements of the program will receive a certificate in neuroscience upon graduation.


Courses


NEU 101 Neuroscience and Everyday Life (also MOL 110/STC 102)   Not offered this year STL

Acquaints non-science majors with classical and modern neuroscience. Lectures will give an overview at levels ranging from molecular signaling to cognitive science with a focus on the neuroscience of everyday life, from the general (love, memory, and personality) to the particular (jet lag, autism, and weight loss). The laboratory will offer hands-on experience in recording signals from single neurons, examining neural structures, and analysis of whole-brain functional brain imaging data. Two 90-minute lectures, one laboratory. S. Wang, A. Gelperin

NEU 201 Fundamentals of Neuroscience (also PSY 258)   Fall STN

This is a survey course on neuroscience, focusing mainly on sensory and motor processing in the primate brain. How does information from the outside world get into the brain, what neuronal pathways does it follow, how is it processed and used to construct an internal model of three-dimensional reality, and how does the brain choose and coordinate the correct behavioral response? I. Witten

NEU 202A Introduction to Cognitive Neuroscience (also PSY 259A)   Spring EC

An introduction to cognitive brain functions, including higher perceptual functions, attention and selective perception, systems for short- and long-term memory, language, cerebral lateralization, motor control, executive functions of the frontal lobe, cognitive development and plasticity, and the problem of consciousness. Major neuropsychological syndromes (e.g., agnosia, amnesia) will be discussed. Prerequisite: 258 or instructor's permission. Two 90-minute lectures, one preceptorial. M. Botvinick

NEU 202B Introduction to Cognitive Neuroscience (also PSY 259B)   Spring STL

An introduction to cognitive brain functions, including higher perceptual functions, attention and selective perception, systems for short- and long-term memory, language, cerebral lateralization, motor control, executive functions of the frontal lobe, cognitive development and plasticity, and the problem of consciousness. Major neuropsychological syndromes (e.g., agnosia, amnesia) will be discussed. Prerequisite: 258 or instructor's permission. Two 90-minute lectures, one three-hour laboratory. M. Botvinick

NEU 301 Cellular Neurobiology (also MOL 310)   Fall

This course will focus on understanding how neurons and the molecules they express contribute to brain function. Topics covered will include the structure and electrical properties of neurons, cell fate decisions, synapse formation and plasticity, neuromodulation, and the function of simple neural circuits. We will also discuss molecular and genetic tools for interrogating the nervous system. Examples will be drawn from studies of sensory system development and function in animals amenable to molecular and cellular level investigation. Students will have the opportunity to read and discuss primary literature throughout the course. M. Murthy

NEU 306 Memory and Cognition (see PSY 306)

NEU 314 Mathematical Tools for Neuroscience   Spring

This lecture course will cover mathematical, statistical, and computational tools necessary to analyze, model, and manipulate neural datasets. A primary goal of the course will be to introduce students to key concepts from linear algebra, dynamical systems, and probability and statistics, with an emphasis on practical implementations via programming. Lectures on each topic will focus on relevant mathematical background, derivation of basic results, and examples relevant to neuroscience. The course will include problem sets based on the MATLAB software package. J. Pillow

NEU 330 Introduction to Connectionist Models: Bridging between Brain and Mind (also PSY 330)   Not offered this year STL

A fundamental goal of cognitive neuroscience is to understand how psychological functions such as attention, memory, language, and decision making arise from computations performed by assemblies of neurons in the brain. This course will provide an introduction to the use of connectionist models (also known as neural network or parallel distributed processing models) as a tool for exploring how psychological functions are implemented in the brain, and how they go awry in patients with brain damage. Prerequisite: instructor's permission. Two 90-minute lectures, one laboratory. K. Norman

NEU 336 The Diversity of Brains (see PSY 336)

NEU 350 Laboratory in Principles of Neuroscience   Spring STL

This course is designed to introduce undergraduate students to modern methods of analysis applied to single neurons, the synaptic connections between neurons and the dynamics of networks of neurons underlying learning and decision making. The course will include mammalian cellular and system neuroanatomy and the influence of experience on the production of new neurons. Students will learn modern methods of microscopy and the application of optogenetic approaches to analysis of neuronal function. Basic neuroscience concepts will be studied using both invertebrate and mammalian CNS preparations. A. Gelperin, D. Tank

NEU 408 Cellular and Systems Neuroscience (also MOL 408/PSY 404)   Not offered this year STN

A survey of fundamental principles in neurobiology at the biophysical, cellular, and system levels. Lectures will address the basis of the action potential, synaptic transmission and plasticity, local circuit computation, sensory physiology, and motor control. Prerequisites: MOL 214 or MOL 215, PSY 258, PHY 103-104, and MAT 103-104, or permission of instructor. Two 90-minute lectures, one preceptorial. T. Buschman, I. Witten

NEU 410 Depression: From Neuron to Clinic (see PSY 410)

NEU 425 Neuroeconomics (also PSY 425)  

This seminar focuses on the recent explosion of interest in understanding the neural basis of valuation and decision making, and the resulting marriage between the formal rigor of economics and the empirical basis of psychology and neuroscience, termed "neuroeconomics". We will approach the question of how the brain makes economic decisions from multiple perspectives, drawing on theoretical, behavioral, and neural data from economics, psychology, and neurobiology. Major topics include: decision under risk and uncertainty; the role of learning in evaluating options; choice mechanisms; and multiplayer interactions and social decision making. Y. Niv

NEU 427 Systems Neuroscience   Spring

The brain is more than a mere collection of its constituent parts. In this class we aim to understand how neurons interact together in local circuits and distributed brain dynamics to perform behaviorally relevant functions. The class will be organized into modules, which are selected to cover most of the major divisions of the brain. For most modules, we will first discuss a simpler circuit/system for which detailed mechanistic models and concrete ideas about function are known. Then, we will go on to discuss more complex systems, which are related to the simpler system. M. Berry

NEU 437 Computational Neuroscience (also MOL 437/PSY 437)   Not offered this year STL

Introduction to the biophysics of nerve cells and synapses, and the mathematics of neural networks. How can networks of neurons compute? How do we model and analyze data from neuroscientific experiments? Data from experiments running at Princeton will be used as examples (e.g., blowfly visual system, hippocampal slice, rodent prefrontal cortex). Each topic will have a lecture and a computer laboratory component. Prerequisite: MOL 410, or elementary knowledge of linear algebra, differential equations, probability, and basic programming ability, or permission of the instructor. Two 90 minute lectures, one laboratory. C. Brody

NEU 447 Neuroimmunology: Immune Molecules in Normal Brain Function and Neuropathology (see MOL 447)