Nonnegative Polynomials and Dynamical Systems

Amir Ali Ahmadi Princeton, ORFE (Affiliated member of PACM, COS, MAE, CSML)

Caltech, CMS Colloquium

October 2018

Optimization over nonnegative polynomials

Defn. A polynomial $p(x) \coloneqq p(x_1, \dots, x_n)$ is nonnegative if $p(x) \ge 0, \forall x \in \mathbb{R}^n$.

Example: When is

$$p(x_1, x_2) = c_1 x_1^4 - 6x_1^3 x_2 - 4x_1^3 + c_2 x_1^2 x_2^2 + 10x_1^2 + 12x_1 x_2^2 + c_3 x_2^4$$

nonnegative? nonnegative over a given basic semialgebraic set?

Basic semialgebraic set: $\{x \in \mathbb{R}^n | g_i(x) \ge 0\}$

Ex:
$$x_1^3 - 2x_1x_2^4 \ge 0$$

 $x_1^4 + 3x_1x_2 - x_2^6 \ge 0$

Why do this?!

Optimization over nonnegative polynomials

ls p(x) ≥ 0 on $\{g_1(x) ≥ 0, ..., g_m(x) ≥ 0\}$?

Optimization

- Lower bounds on polynomial optimization problems
- Proving infeasibility of a system of polynomial inequalities

 $x_i^2 + y_i^2 + z_i^2 = 4, \ i = 1, \dots, 13$ $(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 \ge 4,$ $i, j \in \{1, \ldots, 13\}^2$

Statistics

 Fitting a polynomial to data subject to shape constraints (e.g., convexity, or monotonicity)

 $\frac{\partial p(x)}{\partial x_i} \ge 0, \forall x \in B$

• Stabilizing controllers $\dot{x} = f(x)$

V(x) > 0, $V(x) \le \beta \Rightarrow \nabla V(x)^T f(x) < 0$

Implies that $\{x \mid V(x) \leq \beta\}$ is in the region of attraction

How to prove nonnegativity? The SOS approach

• A polynomial p is a sum of squares (sos) if it can be written as

$$p(x) = \sum_i q_i^2(x)$$
 ,

where q_i are polynomials.

Ex:
$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_3^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3$$

 $-14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$
 $= (x_1^2 - 3x_1x_2 + x_1x_3 + 2x_3^2)^2 + (x_1x_3 - x_2x_3)^2 + (4x_2^2 - x_3^2)^2$

• A polynomial p of degree 2d is **sos** if and only if $\exists Q \ge 0$ such that $p(x) = z(x)^T Q z(x)$

where $z = [1, x_1, ..., x_n, x_1 x_2, ..., x_n^d]^T$ is the vector of monomials of degree up to d.

PRINCETON WORFE Optimizing over set of sos polynomials is an SDP!

4

How to prove nonnegativity over a basic semialgebraic set?

Positivstellensatz: Certifies that

$$p(x) > 0 \text{ on } \{g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$

Putinar's Psatz:

Search for σ_i is an SDP when we bound the degree.

Stengle's Psatz (1974) Schmudgen's Psatz (1991)

All use sos polynomials...

Outline

Part I:

Avoiding SDP in optimization over nonnegative polynomials

- LP, SOCP
- An "optimization-free" Positivstellensatz

Part II:

Asymptotic stability of polynomial vector fields

- Complexity
- Computational converse Lyapunov questions

Practical limitations of SOS

• Scalability is a nontrivial challenge!

Thm: p(x) of degree 2d is sos if and only if

$$p(x) = z^T Q z \quad Q \succeq 0$$

$$z = [1, x_1, x_2, \dots, x_n, x_1 x_2, \dots, x_n^d]^T$$

• The size of the Gram matrix is:

$$\binom{n+d}{d} \times \binom{n+d}{d}$$

- Polynomial in *n* for fixed *d*, but grows quickly
 - The semidefinite constraint is expensive
- E.g., local stability analysis of a 20-state cubic vector field is typically an SDP with ~1.2M decision variables and ~200k constraints

Simple idea...

- Let's not work with SOS...
- Give other sufficient conditions for nonnegativity that are perhaps stronger than SOS, but hopefully cheaper

Not any set inside SOS would work!

- 1) sums of 4th powers of polynomials
- 2) sums of 3 squares of polynomials

Both sets are clearly inside the SOS cone, but linear optimization over them is **intractable**.

dsos and sdsos polynomials (1/3)

Defn. A polynomial *p* is *diagonally-dominant-sum-of-squares* (*dsos*) if it can be written as:

$$p(x) = \sum_{i} \alpha_{i} m_{i}^{2}(x) + \sum_{i,j} \beta_{ij}^{+} (m_{i}(x) + m_{j}(x))^{2} + \sum_{i,j} \beta_{ij}^{-} (m_{i}(x) - m_{j}(x))^{2},$$

for some monomials m_{i}, m_{j}
and some nonnegative constants $\alpha_{i}, \beta_{ij}^{+}, \beta_{ij}^{-}.$

Defn. A polynomial *p* is *scaled-diagonally-dominant-sum-of-squares* (*sdsos*) if it can be written as:

$$p(x) = \sum_{i} \alpha_{i} m_{i}^{2}(x) + \sum_{i,j} (\hat{\beta}_{ij}^{+} m_{i}(x) + \tilde{\beta}_{ij}^{+} m_{j}(x))^{2} + \sum_{i,j} (\hat{\beta}_{ij}^{-} m_{i}(x) - \tilde{\beta}_{ij}^{-} m_{j}(x))^{2},$$

for some monomials m_{i}, m_{j}

and some constants $\alpha_i, \hat{\beta}_{ij}^+, \tilde{\beta}_{ij}^-, \hat{\beta}_{ij}^-$ with $\alpha_i \geq 0$.

PRINCETON UNIVERSITY **EQRFE Note:** $DSOS_{n,d} \subseteq SDSOS_{n,d} \subseteq SOS_{n,d} \subseteq POS_{n,d}$ 9

dsos and sdsos polynomials (2/3)

SDD cone := { $Q \mid \exists$ diagonal D with $D_{ii} > 0$ s.t. DQD dd}

Diagonally dominant sum of squares (dsos) $p(x) = z(x)^T Q z(x), Q \text{ diagonally dominant (dd)}$ LP	Diagonally dominant sum of squares (dsos)
--	--

Scaled diagonally dominant sum of squares (sdsos)	$p(x) = z(x)^T Q z(x), Q$ scaled diagonally dominant (sdd)	SOCP
--	--	------

UNIVERSITY

10

dsos and sdsos polynomials (3/3)

How to do better?

Method #1: r-dsos and r-sdsos polynomials (1/2)

Defn.

- A polynomial p is r-dsos if $p(x) \cdot (\sum_i x_i^2)^r$ is dsos.
- A polynomial p is r-sdsos if $p(x) \cdot (\sum_i x_i^2)^r$ is sdsos.

 $p(x_1, x_2) = x_1^4 + x_2^4 + ax_1^3 x_2 + (1 - \frac{1}{2}a - \frac{1}{2}b)x_1^2 x_2^2 + 2bx_1 x_2^3$ **PRINCETON**UNIVERSITY

Method #1: r-dsos and r-sdsos polynomials (2/2)

• r-dsos can outperform sos!

$$p(x) = x_1^4 x_2^2 + x_2^4 x_3^2 + x_3^4 x_1^2 - 3x_1^2 x_2^2 x_3^2$$

is 1-dsos but not sos.

Theorem: Any even positive definite form is r-dsos for some r.

- Even forms include *copositive programming* (and all problems in NP).
- Shows that LP-based proofs of nonnegativity always possible.

Method #2: dsos/sdsos + change of basis (1/2)

$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_2^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3 - 14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$$

$$p(x) = z^T(x)Qz(x)$$

$$p(x) = \overline{z}^T(x)\begin{pmatrix} \frac{1}{2} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 4 \end{pmatrix} \tilde{z}(x)$$

$$p(x) = \overline{z}^T(x)\begin{pmatrix} \frac{1}{2} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 4 \end{pmatrix} \tilde{z}(x)$$

$$\tilde{z}(x) = \begin{pmatrix} 2x_1^2 - 6x_1x_2 + 2x_1x_3 + 2x_3^2\\ x_1x_3 - x_2x_3\\ x_2^2 - \frac{1}{4}x_3^2 \end{pmatrix}$$

$$\tilde{z}(x) = \begin{pmatrix} 2x_1^2 - 6x_1x_2 + 2x_1x_3 + 2x_3^2\\ x_1x_3 - x_2x_3\\ x_2^2 - \frac{1}{4}x_3^2 \end{pmatrix}$$
Goal: iteratively improve $z(x)$

(

z

UNIVERSITY

[AAA, Hall, Contemporary Mathematics'17] 14

Method #2: dsos/sdsos + change of basis (2/2)

5

Reminder

 $\dot{x} = f(x, u)$

implies $\{x \mid V(x) \leq \beta\}$ is in the region of attraction (ROA)

Stabilizing the inverted N-link pendulum (2N states)

N=2

N=6

Runtime:

2N (# states)	4	6	8	10	12	14	16	18	20	22
DSOS	< 1	0.44	2.04	3.08	9.67	25.1	74.2	200.5	492.0	823.2
SDSOS	< 1	0.72	6.72	7.78	25.9	92.4	189.0	424.74	846.9	1275.6
SOS (SeDuMi)	< 1	3.97	156.9	1697.5	23676.5	∞	8	∞	∞	∞
SOS (MOSEK)	< 1	0.84	16.2	149.1	1526.5	∞	∞	∞	∞	∞

ROA volume ratio:

2N (states)	4	6	8	10	12
$ ho_{dsos}/ ho_{sos}$	0.38	0.45	0.13	0.12	0.09
$ ho_{sdsos}/ ho_{sos}$	0.88	0.84	0.81	0.79	0.79

(b) $\theta_6 \cdot \dot{\theta}_6$ subspace.

Stabilizing ATLAS

• 30 states 14 control inputs Cubic dynamics

Done by SDSOS Optimization

[Majumdar, AAA, Tedrake, CDC]

https://github.com/spot-toolbox/spotless

What can DSOS/SDSOS do in theory?

• Is there always an SOS proof?

Yes, e.g. based on Putinar's Psatz. (under a compactness assumption)

If p(x) > 0, $\forall x \in S$, then $p(x) = \sigma_0(x) + \sum_i \sigma_i(x)g_i(x)$, where σ_0, σ_i are sos

- Is there always an SDSOS proof?
- Is there always an DSOS proof?

Yes! In fact, a much stronger statement is true.

An optimization-free Positivstellensatz (1/2)

$$p(x) > 0, \forall x \in \{x \in \mathbb{R}^n | g_i(x) \ge 0, i = 1, ..., m\}$$

2d =maximum degree of p, g_i

 $\exists r \in \mathbb{N}$ such that

$$\left(f(v^2 - w^2) - \frac{1}{r} \left(\sum_i \left(v_i^2 - w_i^2\right)^2\right)^d + \frac{1}{2r} \left(\sum_i \left(v_i^4 + w_i^4\right)\right)^d\right) \cdot \left(\sum_i v_i^2 + \sum_i w_i^2\right)^{r^2}$$

has nonnegative coefficients,

where f is a form in n + m + 3 variables and of degree 4d, which can be explicitly written from p, g_i and R.

An optimization-free Positivstellensatz (2/2)

$$p(x) > 0 \text{ on } \{x \mid g_i(x) \ge 0\} \Leftrightarrow$$

$$\exists r \in \mathbb{N} \text{ s. t.} \left(f(v^2 - w^2) - \frac{1}{r} \left(\sum_i (v_i^2 - w_i^2)^2 \right)^d + \frac{1}{2r} \left(\sum_i (v_i^4 + w_i^4) \right)^d \right) \cdot \left(\sum_i v_i^2 + \sum_i w_i^2 \right)^{r^2}$$

$$\mathsf{has} \ge \mathbf{0} \text{ coefficients}$$

- p(x) > 0 on $\{x | g_i(x) \ge 0\} \Leftrightarrow f$ is pd
- Result by Polya (1928):

f even and $pd \Rightarrow \exists r \in \mathbb{N}$ such that $f(z) \cdot (\sum_i z_i^2)^r$ has nonnegative coefficients.

- Make f(z) even by considering $f(v^2 w^2)$. We lose positive definiteness of f with this transformation.
- Add the positive definite term $\frac{1}{2r} \left(\sum_{i} \left(v_{i}^{4} + w_{i}^{4} \right) \right)^{d}$ to $f(v^{2} w^{2})$ to make it positive definite. Apply Polya's result.
- The term $-\frac{1}{r} \left(\sum_{i} \left(v_{i}^{2} w_{i}^{2} \right)^{2} \right)^{d}$ ensures that the converse holds as well.

As a corollary, gives LP/SOCP-based converging hierarchies... (Even forms with nonnegative coefficients are trivially dsos.)

Part 2: Asymptotic Stability of Polynomial Vector Fields

Asymptotic stability

Locally Asymp. Stable (LAS) if

$$\forall \in \gamma_0, \exists \delta \gamma_0, s.t.$$

$$\chi(o) \in B_s \Rightarrow \chi(t) \in B_e \quad \forall t$$

$$\mathcal{F}_{X(o)} \in \mathcal{B}_{X} \Longrightarrow \lim_{t \to \infty} \chi(t) = 0$$

Globally Asymp. Stable (GAS) if

$$\begin{array}{c} \forall \in \gamma_{0}, \exists \delta \gamma_{0}, s.t. \\ \chi(o) \in B_{s} \Rightarrow \chi(t) \in B_{\epsilon} \ \forall t \end{array} \end{array}$$

Complexity of deciding asymptotic stability?

$$\dot{x} = Ax$$

•d=1 (linear systems): decidable, and polynomial time

Iff A is Hurwitz (i.e., eigenvalues of A have negative real part)

•Quadratic Lyapunov functions always exist:

$$V(x) = x^T P x, \dot{V}(x) = x^T (A^T P + P A) x (P > 0, A^T P + P A < 0).$$

A polynomial time algorithm is the following:

•Solve $A^T P + PA = -I$

Check if P is positive definite

What if deg(*f*)>1? ...

Complexity of deciding asymptotic stability?

What if deg(*f*)>1? ...

Conjecture of Arnol'd (1976): undecidable (still open)

Fact: Existence of **polynomial Lyapunov functions**, together with a **computable upper bound** on the degree would imply decidability (e.g., by quantifier elimination)

Thm: Deciding (local or global) asymptotic stability of cubic vector fields is strongly NP-hard.

[AAA]

(In particular, this rules out tests based on polynomially-sized convex programs.)

Thm: Deciding asymptotic stability of cubic *homogeneous* vector fields is strongly NP-hard.

Homogeneous means:

$$\dot{x} = f(x)$$
$$f(\lambda x) = \lambda^d f(x)$$

- •All monomials in f have the same degree
- Local Asymptotic Stability = Global Asymptotic Stability

Proof

Thm: Deciding asymptotic stability of cubic homogeneous vector fields is strongly NP-hard.

$$(x_1 \vee \bar{x}_2 \vee x_3) \land (\bar{x}_1 \vee x_2 \vee x_3) \land (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3) \land (\bar{x}_2 \vee \bar{x}_3) \land (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3) \land (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3) \land (\bar{x}_2 \vee \bar{x}_3) \land (\bar{x}_3 \vee \bar{x}_3) \land (\bar{x}_2 \vee \bar{x}_3)$$

Goal: Design a cubic differential equation which is a.s. iff **EXINCETON EXINCETON EXINC**

Proof (cont'd)

Proof (cont'd)

Thm: Let V(x) be a homogeneous polynomial. Then, V(x) is positive definite $\iff \dot{x} = -\nabla V(x)$ is GAS

 $\begin{array}{l} {\rm Proof:} \Rightarrow \\ \dot{V}(x) = \langle \nabla V(x), \dot{x} \rangle = - ||\nabla V(x)||^2 \leq 0 \\ V(x) = \frac{1}{4} x^T \nabla V(x) \quad \ \, \mbox{implies strict decrease...} \\ {\rm Apply Lyapunov's theorem.} \end{array}$

$$\Leftarrow$$

- V(x) must be nonnegative because...
- If V(x) were to vanish, its gradient would vanish also...

Nonexistence of polynomial Lyapunov functions (1/4)

$$\dot{x} = -x + xy \\ \dot{y} = -y$$

[AAA, Krstic, Parrilo, CDC'11] 30

Nonexistence of polynomial Lyapunov functions (2/4)

$$\dot{x} = -x + xy \\ \dot{y} = -y$$

Claim 2: No polynomial Lyapunov function (of any degree) exists!

Proof: $x(t) = x(0)e^{[y(0)-y(0)e^{-t}-t]}$ $y(t) = y(0)e^{-t}$ $t^* = \ln(k)$

$$V(e^{\alpha(k-1)}, \alpha) < V(k, \alpha k)$$

Impossible.

- 200 400 600 800 1000 No rational Lyapunov function either [AAA, El Khadir '18].
- But a quadratic Lyapunov function locally.

31

Nonexistence of polynomial Lyapunov functions (3/4)

$$f(x,y) = \begin{pmatrix} -2y(-x^4 + 2x^2y^2 + y^4) \\ 2x(x^4 + 2x^2y^2 - y^4) \end{pmatrix} - (x^2 + y^2) \begin{pmatrix} 2x(x^4 + 2x^2y^2 - y^4) \\ 2y(-x^4 + 2x^2y^2 + y^4) \end{pmatrix}$$

Claim 1: System is GAS. Claim 2: No polynomial Lyapunov function (of any degree) even locally!

Proof:

$$W(x,y) = \frac{x^4 + y^4}{x^2 + y^2}$$

[AAA, El Khadir, Systems & Control Letters'18] ³²

Nonexistence of polynomial Lyapunov functions (4/4)

$$f(x,y) = \underbrace{\begin{pmatrix} -2y(-x^4 + 2x^2y^2 + y^4) \\ 2x(x^4 + 2x^2y^2 - y^4) \end{pmatrix}}_{2x(x^4 + 2x^2y^2 - y^4)} - (x^2 + y^2) \begin{pmatrix} 2x(x^4 + 2x^2y^2 - y^4) \\ 2y(-x^4 + 2x^2y^2 + y^4) \end{pmatrix}$$

Claim 2: No polynomial Lyapunov function (of any degree) **even locally**!

Proof idea:

Suppose we had one: $p = \sum_{k=0}^{\infty} p_k$

$$\Rightarrow \langle \nabla p_{k_0}(x,y), f_0(x,y) \rangle \le 0$$

$$\Rightarrow \langle \nabla p_{k_0}(x, y), f_0(x, y) \rangle = 0.$$

→ A polynomial must be constant on the unit level set of $W(x, y) = (x^4 + y^4)/(x^2 + y^2)$

Let's end on a positive note!

Thm. A homogeneous polynomial vector field is asymptotically stable iff it admits a rational Lyapunov function of the type p(x)

$$V(x) = \frac{p(x)}{(\sum_{i=1}^{n} x_i^2)^r}$$

 $f(cx) = c^d f(x)$ Linear case, d = 1i.e. f(x) = Ax $r = 0, p(x) = x^T P x$

where p is a homogeneous polynomial.

- We show that V and −V both have "strict SOS certificates."
 → V can be found by SDP!
- Useful also for local asym. stability of non-homogeneous systems.
- We show that unlike the linear case, the degree of V cannot be bounded as a function of the dimension and degree of f.

[AAA, El Khadir, TAC, accepted with minor revision] 34

Main messages

- SDP-free alternatives to SOS
 - DSOS/SDSOS (LP and SOCP)
 - Infeasibility certificates based on poly-poly multiplication

- No pseudo-poly-time algorithm for asymptotic stability of poly vector fields
- Polynomail Lyapunov function can fail even locally
- Rational Lyapunov functions deserve more attention

Want to know more? aaa.princeton.edu