Nonnegative Polynomials and

Dynamical Systems

Amir Ali Ahmadi
Princeton, ORFE
(Affiliated member of PACM, COS, MAE, CSML)

Caltech, CMS Colloquium

Optimization over nonnegative polynomials

Defn. A polynomial $p(x):=p\left(x_{1}, \ldots, x_{n}\right)$ is nonnegative if $p(x) \geq 0, \forall x \in \mathbb{R}^{n}$.
Example: When is

$$
\begin{aligned}
& p\left(x_{1}, x_{2}\right)=c_{1} x_{1}^{4}-6 x_{1}^{3} x_{2}-4 x_{1}^{3}+c_{2} x_{1}^{2} x_{2}^{2}+10 x_{1}^{2}+12 x_{1} x_{2}^{2}+c_{3} x_{2}^{4} \\
& \text { nonnegative? } \\
& \text { nonnegative over a given basic semialgebraic set? }
\end{aligned}
$$

Basic semialgebraic set: $\quad\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0\right\}$

$$
\begin{array}{ll}
\mathrm{Ex}: & x_{1}^{3}-2 x_{1} x_{2}^{4} \geq 0 \\
& x_{1}^{4}+3 x_{1} x_{2}-x_{2}^{6} \geq 0
\end{array}
$$

Optimization over nonnegative polynomials

$$
\text { Is } p(x) \geq 0 \text { on }\left\{g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} ?
$$

Optimization

- Lower bounds on polynomial optimization problems
- Proving infeasibility of a system of polynomial inequalities

$x_{i}^{2}+y_{i}^{2}+z_{i}^{2}=4, i=1, \ldots, 13$
$\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+\left(z_{i}-z_{j}\right)^{2} \geq 4$,
$i, j \in\{1, \ldots, 13\}^{2}$

Statistics

- Fitting a polynomial to data subject to shape constraints (e.g., convexity, or monotonicity)

$$
\frac{\partial p(x)}{\partial x_{j}} \geq 0, \forall x \in B
$$

- Stabilizing controllers

$$
x=f(x)
$$

Implies that

$$
\{x \mid V(x) \leq \beta\}
$$

is in the region of attraction

How to prove nonnegativity? The SOS approach

- A polynomial p is a sum of squares (sos) if it can be written as

$$
p(x)=\sum_{i} q_{i}^{2}(x)
$$

where q_{i} are polynomials.
Ex: $\quad p(x)=x_{1}^{4}-6 x_{1}^{3} x_{2}+2 x_{1}^{3} x_{3}+6 x_{1}^{2} x_{3}^{2}+9 x_{1}^{2} x_{2}^{2}-6 x_{1}^{2} x_{2} x_{3}$

$$
-14 x_{1} x_{2} x_{3}^{2}+4 x_{1} x_{3}^{3}+5 x_{3}^{4}-7 x_{2}^{2} x_{3}^{2}+16 x_{2}^{4}
$$

$$
=\left(x_{1}^{2}-3 x_{1} x_{2}+x_{1} x_{3}+2 x_{3}^{2}\right)^{2}+\left(x_{1} x_{3}-x_{2} x_{3}\right)^{2}+\left(4 x_{2}^{2}-x_{3}^{2}\right)^{2}
$$

- A polynomial p of degree $2 d$ is sos if and only if $\exists Q \succcurlyeq 0$ such that

$$
p(x)=z(x)^{T} Q_{z}(x)
$$

where $z=\left[1, x_{1}, \ldots, x_{n}, x_{1} x_{2}, \ldots, x_{n}^{d}\right]^{T}$ is the vector of monomials of degree up to d.

How to prove nonnegativity over a basic semialgebraic set?

Positivstellensatz: Certifies that

$$
p(x)>0 \text { on }\left\{g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

Putinar's Psatz:
(1993)

$$
\begin{gathered}
p(x)>0 \text { on }\left\{g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \\
\quad \Downarrow \begin{array}{c}
\text { under Archimedean condition }
\end{array} \\
p(x)=\sigma_{0}(x)+\sum_{i} \sigma_{i}(x) g_{i}(x) \\
\text { where } \sigma_{i}, i=0, \ldots, m \text { are sos }
\end{gathered}
$$

Search for σ_{i} is an SDP when we bound the degree.

> Stengle’s Psatz (1974)
> Schmudgen's Psatz (1991)

All use sos polynomials...

Outline

Part I:

Avoiding SDP in optimization over nonnegative polynomials

- LP, SOCP
- An "optimization-free" Positivstellensatz

Part II:

Asymptotic stability of polynomial vector fields

- Complexity
- Computational converse Lyapunov questions

Practical limitations of SOS

- Scalability is a nontrivial challenge!

Thm: $\boldsymbol{p}(\boldsymbol{x})$ of degree $\mathbf{2 d}$ is sos if and only if

$$
\begin{gathered}
p(x)=z^{T} Q z \quad Q \succeq 0 \\
z=\left[1, x_{1}, x_{2}, \ldots, x_{n}, x_{1} x_{2}, \ldots, x_{n}^{d}\right]^{T}
\end{gathered}
$$

- The size of the Gram matrix is:

$$
\binom{n+d}{d} \times\binom{ n+d}{d}
$$

- Polynomial in n for fixed d, but grows quickly
- The semidefinite constraint is expensive
E.g., local stability analysis of a 20 -state cubic vector field is typically an SDP with $\sim 1.2 \mathrm{M}$ decision variables and $\sim 200 \mathrm{k}$ constraints

Simple idea...

- Let's not work with SOS...
- Give other sufficient conditions for nonnegativity that are perhaps stronger than SOS, but hopefully cheaper

Not any set inside SOS would work!

1) sums of $4^{\text {th }}$ powers of polynomials
2) sums of 3 squares of polynomials

Both sets are clearly inside the SOS cone,
 but linear optimization over them is intractable.

dsos and sdsos polynomials (1/3)

Defn. A polynomial p is diagonally-dominant-sum-of-squares (dsos) if it can be written as:
$p(x)=\sum_{i} \alpha_{i} m_{i}^{2}(x)+\sum_{i, j} \beta_{i j}^{+}\left(m_{i}(x)+m_{j}(x)\right)^{2}+\sum_{i, i} \beta_{i j}^{-}\left(m_{i}(x)-m_{j}(x)\right)^{2}$,
for some monomials m_{i}, m_{j} and some nonnegative constants $\alpha_{i}, \beta_{i j}^{+}, \beta_{i j}^{-}$.

Defn. A polynomial p is scaled-diagonally-dominant-sum-ofsquares (sdsos) if it can be written as:
$p(x)=\sum_{i} \alpha_{i} m_{i}^{2}(x)+\sum_{i, j}\left(\hat{\beta}_{i j}^{+} m_{i}(x)+\tilde{\beta}_{i j}^{+} m_{j}(x)\right)^{2}+\sum_{i, j}\left(\hat{\beta}_{i j}^{-} m_{i}(x)-\tilde{\beta}_{i j}^{-} m_{j}(x)\right)^{2}$,
for some monomials m_{i}, m_{j} and some constants $\alpha_{i}, \hat{\beta}_{i j}^{+}, \tilde{\beta}_{i j}^{+}, \hat{\beta}_{i j}^{-}, \tilde{\beta}_{i j}^{-}$with $\alpha_{i} \geq 0$.

dsos and sdsos polynomials (2/3)

SDD cone $:=\left\{Q \mid \exists\right.$ diagonal D with $D_{i i}>0$ s.t. $\left.D Q D d d\right\}$

Diagonally dominant sum of squares (dsos)

$$
p(x)=z(x)^{T} Q z(x), Q \text { diagonally dominant }(\mathrm{dd})
$$

LP

dsos and sdsos polynomials (3/3)

How to do better?

Method \#1: r-dsos and r-sdsos polynomials (1/2)

Defn.

- A polynomial p is r-dsos if $p(x) \cdot\left(\sum_{i} x_{i}^{2}\right)^{r}$ is dsos.
- A polynomial p is r-sdsos if $p(x) \cdot\left(\sum_{i} x_{i}^{2}\right)^{r}$ is sdsos.

(a) The LP-based r-dsos hierarchy.

(b) The SOCP-based r-sdsos hierarchy.

$$
p\left(x_{1}, x_{2}\right)=x_{1}^{4}+x_{2}^{4}+a x_{1}^{3} x_{2}+\left(1-\frac{1}{2} a-\frac{1}{2} b\right) x_{1}^{2} x_{2}^{2}+2 b x_{1} x_{2}^{3}
$$

Method \#1: r-dsos and r-sdsos polynomials (2/2)

- r-dsos can outperform sos!

$$
p(x)=x_{1}^{4} x_{2}^{2}+x_{2}^{4} x_{3}^{2}+x_{3}^{4} x_{1}^{2}-3 x_{1}^{2} x_{2}^{2} x_{3}^{2}
$$

is 1-dsos but not sos.

Theorem: Any even positive definite form is r-dsos for some r.

- Even forms include copositive programming (and all problems in NP).
- Shows that LP-based proofs of nonnegativity always possible.

Method \#2: dsos/sdsos + change of basis (1/2)

$$
\begin{aligned}
p(x)= & x_{1}^{4}-6 x_{1}^{3} x_{2}+2 x_{1}^{3} x_{3}+6 x_{1}^{2} x_{3}^{2}+9 x_{1}^{2} x_{2}^{2}-6 x_{1}^{2} x_{2} x_{3}-14 x_{1} x_{2} x_{3}^{2}+4 x_{1} x_{3}^{3} \\
& +5 x_{3}^{4}-7 x_{2}^{2} x_{3}^{2}+16 x_{2}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& p(x)=z^{T}(x) Q z(x) \\
& Q=\left(\begin{array}{cccccc}
1 & -3 & 0 & 1 & 0 & 2 \\
-3 & 9 & 0 & -3 & 0 & -6 \\
0 & 0 & 16 & 0 & 0 & -4 \\
1 & -3 & 0 & 2 & -1 & 2 \\
0 & 0 & 0 & -1 & 1 & 0 \\
2 & -6 & 4 & 2 & 0 & 5
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& p(x)=\tilde{z}^{T}(x)\left(\begin{array}{lll}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4 .
\end{array}\right) \tilde{z}(x) \\
& \tilde{z}(x)=\left(\begin{array}{c}
2 x_{1}^{2}-6 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{3}^{2} \\
x_{1} x_{3}-x_{2} x_{3} \\
x_{2}^{2}-\frac{1}{4} x_{3}^{2}
\end{array}\right)
\end{aligned}
$$

Goal: iteratively improve $z(x)$

Method \#2: dsos/sdsos + change of basis (2/2)

LP $\left[\begin{array}{l}\max _{\vec{P}, Q} l(\vec{P}) \\ \text { s.t. } P(x)=z^{\top}(x) Q z(x) V_{x} \\ \quad Q d d\end{array}\right]$
\rightarrow Optimal soln. Q^{*}
\rightarrow Cholesky: $Q^{*}=U^{\top} U$
$L P_{+} \int_{\vec{P}, Q}^{\max } l(\vec{P})$
s.t. $P(x)=z^{\top}(x) U^{\top} Q U z(x) \forall x$
$Q d d$

Works beautifully!

Reminder

$\dot{x}=f(x, u)$
Stability of equilibrium points

implies $\{x \mid V(x) \leq \beta\}$ is in the region of attraction (ROA)

Stabilizing the inverted N -link pendulum (2N states)

(a) $\theta_{1}-\dot{\theta}_{1}$ subspace.

(b) $\theta_{6}-\dot{\theta}_{6}$ subspace.

$\mathrm{N}=1$

Runtime:

$\mathrm{N}=2$

2N (\# states)	4	6	8	10	12	14	16	18	20	22
DSOS	<1	0.44	2.04	3.08	9.67	25.1	74.2	200.5	492.0	823.2
SDSOS	<1	0.72	6.72	7.78	25.9	92.4	189.0	424.74	846.9	1275.6
SOS (SeDuMi)	<1	3.97	156.9	1697.5	23676.5	∞	∞	∞	∞	∞
SOS (MOSEK)	<1	0.84	16.2	149.1	1526.5	∞	∞	∞	∞	∞

ROA volume ratio:

2 N (states)	4	6	8	10	12
$\rho_{\text {dsos }} / \rho_{\text {sos }}$	0.38	0.45	0.13	0.12	0.09
$\rho_{\text {sdsos }} / \rho_{\text {sos }}$	0.88	0.84	0.81	0.79	0.79

Stabilizing ATLAS

- 30 states 14 control inputs Cubic dynamics

Done by SDSOS Optimization
[Majumdar, AAA, Tedrake, CDC]

What can DSOS/SDSOS do in theory?

$$
p(x)>0, \forall x \in\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

- Is there always an SOS proof?
Yes, e.g. based on Putinar's Psatz.
(under a compactness assumption)

\[\)| If $p(x)>0, \forall x \in S,$ |
| :---: |
| then $p(x)=\sigma_{0}(x)+\sum_{i} \sigma_{i}(x) g_{i}(x),$ |
| where $\sigma_{0}, \sigma_{i} \text { are sos }$ |

\]

- Is there always an SDSOS proof?
- Is there always an DSOS proof?

Yes! In fact, a much stronger statement is true.

An optimization－free Positivstellensatz（1／2）

$$
p(x)>0, \forall x \in\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

$2 d=$ maximum degree of p, g_{i}
\Uparrow Under compactness assumptions， i．e．，$\left\{x \mid g_{i}(x) \geq 0\right\} \subseteq B(0, R)$

$$
\begin{gathered}
\exists r \in \mathbb{N} \text { such that } \\
\left(f\left(v^{2}-w^{2}\right)-\frac{1}{r}\left(\sum_{i}\left(v_{i}^{2}-w_{i}^{2}\right)^{2}\right)^{d}+\frac{1}{2 r}\left(\sum_{i}\left(v_{i}^{4}+w_{i}^{4}\right)\right)^{d}\right) \cdot\left(\sum_{i} v_{i}^{2}+\sum_{i} w_{i}^{2}\right)^{r^{2}} \\
\text { has nonnegative coefficients, }
\end{gathered}
$$

where f is a form in $n+m+3$ variables and of degree $4 d$ ，which can be explicitly written from p, g_{i} and R ．

An optimization-free Positivstellensatz (2/2)

$$
\begin{gathered}
p(x)>0 \text { on }\left\{x \mid g_{i}(x) \geq 0\right\} \Leftrightarrow \\
\exists r \in \mathbb{N} \text { s.t. }\left(f\left(v^{2}-w^{2}\right)-\frac{1}{r}\left(\sum_{i}\left(v_{i}^{2}-w_{i}^{2}\right)^{2}\right)^{d}+\frac{1}{2 r}\left(\sum_{i}\left(v_{i}^{4}+w_{i}^{4}\right)\right)^{d}\right) \cdot\left(\sum_{i} v_{i}^{2}+\sum_{i} w_{i}^{2}\right)^{r^{2}} \\
\text { has } \geq 0 \text { coefficients }
\end{gathered}
$$

- $p(x)>0$ on $\left\{x \mid g_{i}(x) \geq 0\right\} \Leftrightarrow f$ is pd
- Result by Polya (1928):
f even and $\mathrm{pd} \Rightarrow \exists r \in \mathbb{N}$ such that $f(z) \cdot\left(\sum_{i} z_{i}^{2}\right)^{r}$ has nonnegative coefficients.
- Make $f(z)$ even by considering $f\left(v^{2}-w^{2}\right)$. We lose positive definiteness of f with this transformation.
- Add the positive definite term $\frac{1}{2 r}\left(\sum_{i}\left(v_{i}^{4}+w_{i}^{4}\right)\right)^{d}$ to $f\left(v^{2}-w^{2}\right)$ to make it positive definite. Apply Polya's result.
- The term $-\frac{1}{r}\left(\sum_{i}\left(v_{i}^{2}-w_{i}^{2}\right)^{2}\right)^{d}$ ensures that the converse holds as well.

As a corollary, gives LP/SOCP-based converging hierarchies... (Even forms with nonnegative coefficients are trivially dsos.)

Part 2:
 Asymptotic Stability of Polynomial Vector Fields

Asymptotic stability

$\dot{x}=f(x) \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ polynomial with $\quad f(0)=0$
Example $\dot{x}_{1}=-x_{2}+\frac{3}{2} x_{1}^{2}-\frac{1}{2} x_{1}^{3} x_{2}$

$$
\dot{x}_{2}=3 x_{1}-x_{1} x_{2}
$$

Locally Asymp. Stable (LAS) if

$$
\begin{aligned}
0 \quad \forall & \forall>0, \exists \delta>0, \text { s.t. } \\
& x(0) \in B_{\delta} \Rightarrow x(t) \in B_{\epsilon} \forall t
\end{aligned}
$$

- $\exists \alpha>0$ st.
\#i or

$$
x(0) \in B_{\alpha} \Rightarrow \lim _{t \rightarrow \infty} x(t)=0 .
$$

Globally Asymp. Stable (GAS) if

- $\forall \in>0, \exists \delta>0$, st.

$$
x(0) \in B_{\delta} \Rightarrow x(t) \in B_{\epsilon} \quad \forall t
$$

- $\forall x_{0} \in \mathbb{R}^{n}, \lim _{t \rightarrow \infty} x(t)=0$.

Complexity of deciding asymptotic stability?

$$
\dot{x}=A x
$$

-d=1 (linear systems): decidable, and polynomial time
-Iff A is Hurwitz (i.e., eigenvalues of A have negative real part)
-Quadratic Lyapunov functions always exist:

$$
\begin{gathered}
\cdot V(x)=x^{T} P x, \dot{V}(x)=x^{T}\left(A^{T} P+P A\right) x \\
\left(P \succ 0, A^{T} P+P A \prec 0\right) .
\end{gathered}
$$

-A polynomial time algorithm is the following:
-Solve $A^{T} P+P A=-I$
-Check if P is positive definite

Complexity of deciding asymptotic stability?

What if $\operatorname{deg}(f)>1$? ...
-Conjecture of Arnol'd (1976): undecidable (still open)
Fact: Existence of polynomial Lyapunov functions, together with a computable upper bound on the degree would imply decidability (e.g., by quantifier elimination)

Thm: Deciding (local or global) asymptotic stability of cubic vector fields is strongly NP-hard.
(In particular, this rules out tests based on polynomially-sized convex programs.)

Thm: Deciding asymptotic stability of cubic homogeneous vector fields is strongly NP-hard.

Homogeneous means: $\quad \dot{x}=f(x)$

$$
f(\lambda x)=\lambda^{d} f(x)
$$

-All monomials in f have the same degree
-Local Asymptotic Stability = Global Asymptotic Stability

Proof

Thm: Deciding asymptotic stability of cubic homogeneous vector fields is strongly NP-hard.

Reduction from: ONE-IN-THREE 3SAT

$$
\begin{aligned}
& 1 \\
& \left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \\
& x_{1}=1, x_{2}=1, x_{3}=0
\end{aligned}
$$

$$
\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right)
$$

Goal: Design a cubic differential equation which is a.s. iff Bencrov \#infFEONE-IN-THREE 3SAT has no solution

Proof (cont'd)

ONE-IN-THREE

3SAT

$$
\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{5}\right) \wedge\left(\bar{x}_{1} \vee x_{3} \vee \bar{x}_{5}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)
$$

$\begin{aligned} & \\ & \text { Positivity of } \quad p(x)= \sum_{i=1}^{5} x_{i}^{2}\left(1-x_{i}\right)^{2} \\ &+\left(x_{1}+\left(1-x_{2}\right)+x_{4}-1\right)^{2}+\left(\left(1-x_{2}\right)+\left(1-x_{3}\right)+x_{5}-1\right)^{2} \\ & \text { quartic forms }+\left(\left(1-x_{1}\right)+x_{3}+\left(1-x_{5}\right)-1\right)^{2}+\left(x_{1}+x_{3}+x_{4}-1\right)^{2}\end{aligned}$

$$
p_{h}(x, y)=y^{4} p\left(\frac{x}{y}\right)
$$

Asymptotic stability of

cubic homogeneous

 vector fields$$
\begin{aligned}
& z:=(x, y) \\
& \dot{z}=-\nabla p_{h}(z)
\end{aligned}
$$

Proof (cont'd)

Thm: Let $V(x)$ be a homogeneous polynomial. Then, $V(x)$ is positive definite $\Leftrightarrow \dot{x}=-\nabla V(x)$ is GAS

Proof: \Rightarrow
$\dot{V}(x)=\langle\nabla V(x), \dot{x}\rangle=-\|\nabla V(x)\|^{2} \leq 0$
$V(x)=\frac{1}{4} x^{T} \nabla V(x) \quad$ implies strict decrease...
Apply Lyapunov's theorem.

- $V(x)$ must be nonnegative because...
- If $V(x)$ were to vanish, its gradient would vanish also...

Nonexistence of polynomial Lyapunov functions (1/4)

$$
\begin{aligned}
\dot{x} & =-x+x y \\
\dot{y} & =-y
\end{aligned}
$$

Claim 1: System is GAS.
Claim 2: No polynomial Lyapunov function (of any degree) exists!

Proof:

$$
\begin{aligned}
V(x, y) & =\ln \left(1+x^{2}\right)+y^{2} \\
\dot{V}(x, y) & =\frac{\partial V}{\partial x} \dot{x}+\frac{\partial V}{\partial y} \dot{y} \\
& =-\frac{x^{2}+2 y^{2}+x^{2} y^{2}+(x-x y)^{2}}{1+x^{2}}
\end{aligned}
$$

Nonexistence of polynomial Lyapunov functions (2/4)

$$
\begin{aligned}
\dot{x} & =-x+x y \\
\dot{y} & =-y
\end{aligned}
$$

Claim 2: No polynomial Lyapunov

 function (of any degree) exists!Proof: $x(t)=x(0) e^{\left[y(0)-y(0) e^{-t}-t\right]}$ $y(t)=y(0) e^{-t}$
$(k, \alpha k) \xrightarrow{t^{*}=\ln (k)}\left(e^{\alpha(k-1)}, \alpha\right)$

- No rational Lyapunov function either [AAA, El Khadir '18].
- But a quadratic Lyapunov function locally.

Nonexistence of polynomial Lyapunov functions (3/4)

$f(x, y)=\binom{-2 y\left(-x^{4}+2 x^{2} y^{2}+y^{4}\right)}{2 x\left(x^{4}+2 x^{2} y^{2}-y^{4}\right)}-\left(x^{2}+y^{2}\right)\binom{2 x\left(x^{4}+2 x^{2} y^{2}-y^{4}\right)}{2 y\left(-x^{4}+2 x^{2} y^{2}+y^{4}\right)}$

Claim 1: System is GAS.
Claim 2: No polynomial Lyapunov function (of any degree) even locally!

Proof:

$$
W(x, y)=\frac{x^{4}+y^{4}}{x^{2}+y^{2}}
$$

Nonexistence of polynomial Lyapunov functions (4/4)

$$
f(x, y)=\overbrace{\binom{-2 y\left(-x^{4}+2 x^{2} y^{2}+y^{4}\right)}{2 x\left(x^{4}+2 x^{2} y^{2}-y^{4}\right)}}^{f_{0}(x, y)} \overbrace{-\left(x^{2}+y^{2}\right)\binom{2 x\left(x^{4}+2 x^{2} y^{2}-y^{4}\right)}{2 y\left(-x^{4}+2 x^{2} y^{2}+y^{4}\right)}}^{f_{1}(x, y)}
$$

Claim 2: No polynomial Lyapunov function (of any degree) even locally! Proof idea:
Suppose we had one: $p=\sum_{k=0}^{\infty} p_{k}$
$\rightarrow\left\langle\nabla p_{k_{0}}(x, y), f_{0}(x, y)\right\rangle \leq 0$
$\rightarrow\left\langle\nabla p_{k_{0}}(x, y), f_{0}(x, y)\right\rangle=0$.

\rightarrow A polynomial must be constant on the unit level set of $W(x, y)=\left(x^{4}+y^{4}\right) /\left(x^{2}+y^{2}\right)$

Let's end on a positive note!

Thm. A homogeneous polynomial vector field is asymptotically stable iff it admits a rational Lyapunov function of the type

$$
V(x)=\frac{p(x)}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{r}}
$$

where p is a homogeneous polynomial.

$$
f(c x)=c^{d} f(x)
$$

Linear case, $d=1$

$$
\begin{gathered}
\text { i.e. } f(x)=A x \\
r=0, p(x)=x^{T} P x
\end{gathered}
$$

- We show that V and $-\dot{V}$ both have "strict SOS certificates." $\rightarrow V$ can be found by SDP!
- Useful also for local asym. stability of non-homogeneous systems.
- We show that unlike the linear case, the degree of V cannot be bounded as a function of the dimension and degree of f.

Main messages

- SDP-free alternatives to SOS
- DSOS/SDSOS (LP and SOCP)
- Infeasibility certificates based on poly-poly multiplication

- No pseudo-poly-time algorithm for asymptotic stability of poly vector fields
- Polynomail Lyapunov function can fail even locally
- Rational Lyapunov functions deserve more attention

