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Optimization over nonnegative polynomials

Basic semialgebraic set:

Why do this?!

Example: When is  

nonnegative?
nonnegative over a given basic semialgebraic set?

𝑥 ∈ ℝ𝑛 𝑔𝑖 𝑥 ≥ 0}

Ex: 𝑥1
3 − 2𝑥1𝑥2

4 ≥ 0
𝑥1
4 + 3𝑥1𝑥2 − 𝑥2

6 ≥ 0
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Optimization over nonnegative polynomials

Is 𝑝 𝑥 ≥ 0 on {𝑔1 𝑥 ≥ 0,… , 𝑔𝑚 𝑥 ≥ 0}?

Optimization Statistics Control

• Lower bounds on 
polynomial 
optimization problems

• Proving infeasibility of 
a system of polynomial 
inequalities

• Fitting a polynomial to data 
subject to shape constraints
(e.g., convexity, or monotonicity)

𝜕𝑝(𝑥)

𝜕𝑥𝑗
≥ 0, ∀𝑥 ∈ 𝐵

• Stabilizing controllers

Implies that 

𝑥 𝑉 𝑥 ≤ 𝛽}
is in the region of attraction

𝑉 𝑥 > 0,
𝑉 𝑥 ≤ 𝛽 ⇒ 𝛻𝑉 𝑥 𝑇𝑓 𝑥 < 0

 𝑥 = 𝑓(𝑥)
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How to prove nonnegativity? The SOS approach

Ex: 

Optimizing over set of sos polynomials is an SDP!

• A polynomial 𝑝 is a sum of squares (sos) if it can be written as

• A polynomial 𝑝 of degree 2𝑑 is sos if and only if ∃𝑄 ≽ 0 such that
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How to prove nonnegativity 
over a basic semialgebraic set?

Positivstellensatz: Certifies that

Putinar’s Psatz:
(1993) under Archimedean condition

Stengle’s Psatz (1974)
Schmudgen’s Psatz (1991)
…

Search for 𝝈𝒊 is an SDP when we bound the degree.

⇓
𝑝 𝑥 = 𝜎0 𝑥 +  𝑖 𝜎𝑖 𝑥 𝑔𝑖 𝑥 ,

where 𝜎𝑖 , 𝑖 = 0,… ,𝑚 are sos

All use sos polynomials…



Outline

6

Part I:
Avoiding SDP in optimization over nonnegative polynomials

- LP, SOCP

- An “optimization-free” Positivstellensatz

Part II:
Asymptotic stability of polynomial vector fields

- Complexity

- Computational converse Lyapunov questions
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Practical limitations of SOS

• Scalability is a nontrivial challenge!

Thm:  𝒑(𝒙) of degree 𝟐𝒅 is sos if and only if

• The size of the Gram matrix is:

• Polynomial in n for fixed d, but grows quickly

• The semidefinite constraint is expensive

• E.g., local stability analysis of a 20-state cubic vector field is typically 
an SDP with ~1.2M decision variables and ~200k constraints
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Simple idea…

• Let’s not work with SOS…

• Give other sufficient conditions for nonnegativity that are 
perhaps stronger than SOS, but hopefully cheaper

1) sums of 4th powers of polynomials

2) sums of 3 squares of polynomials

Both sets are clearly inside the SOS cone,
but linear optimization over them is intractable.

Not any set inside SOS would work!

POS POS

SOS
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dsos and sdsos polynomials (1/3)

Defn. A polynomial p is diagonally-dominant-sum-of-squares
(dsos) if it can be written as:

for some monomials 
and some nonnegative constants

Defn. A polynomial p is scaled-diagonally-dominant-sum-of-
squares (sdsos) if it can be written as:

for some monomials 
and some constants

Note:
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dsos and sdsos polynomials (2/3)

[AAA, Majumdar, SIAM J. on Applied Algebra and Geometry]
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dsos and sdsos polynomials (3/3)

How to do better?
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Method #1: r-dsos and r-sdsos polynomials (1/2)

Defn.
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Method #1: r-dsos and r-sdsos polynomials (2/2)

• r-dsos can outperform sos!

is 1-dsos but not sos.

Theorem: Any even positive definite form is r-dsos for some r.

• Even forms include copositive programming 
(and all problems in NP).

• Shows that LP-based proofs of nonnegativity always possible.



Method #2: dsos/sdsos + change of basis (1/2)
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Goal: iteratively improve 𝑧(𝑥)

[AAA, Hall, Contemporary Mathematics’17]
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Method #2: dsos/sdsos + change of basis (2/2)

LP

SOCP

Works beautifully!



Reminder

Stability of equilibrium points

implies 𝑥 𝑉 𝑥 ≤ 𝛽} is in the region of attraction (ROA)   
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Stabilizing the inverted N-link pendulum (2N states)

N=1

N=2 N=6

Runtime:

ROA volume ratio:

[Majumdar, AAA, Tedrake, CDC]
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Stabilizing ATLAS

[Majumdar, AAA, Tedrake, CDC]

Done by SDSOS Optimization

• 30 states        14 control inputs    Cubic dynamics

https://github.com/spot-toolbox/spotless



PutinarPutinar

If 𝑝 𝑥 > 0, ∀𝑥 ∈ 𝑆,
then 𝑝 𝑥 = 𝜎0 𝑥 +  𝑖 𝜎𝑖 𝑥 𝑔𝑖(𝑥) ,

where 𝜎0, 𝜎𝑖 are sos
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What can DSOS/SDSOS do in theory?

𝑝 𝑥 > 0, ∀𝑥 ∈ 𝑥 ∈ ℝ𝑛 𝑔𝑖 𝑥 ≥ 0, 𝑖 = 1, … ,𝑚}

• Is there always an SOS proof?

• Is there always an SDSOS proof?

• Is there always an DSOS proof?

Yes, e.g. based on Putinar’s Psatz.
(under a compactness assumption)

Yes! In fact, a much stronger statement is true.
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An optimization-free Positivstellensatz (1/2)

[AAA, Hall, Math of OR ‘18] (2018 INFORMS Young Researchers Prize)

𝑝 𝑥 > 0, ∀𝑥 ∈ 𝑥 ∈ ℝ𝑛 𝑔𝑖 𝑥 ≥ 0, 𝑖 = 1, … ,𝑚}

2𝑑 =maximum degree of 𝑝, 𝑔𝑖

⇔

∃ 𝑟 ∈ ℕ such that 

𝑓 𝑣2 − 𝑤2 −
1

𝑟
 𝑖 𝑣𝑖

2 − 𝑤𝑖
2 2 𝑑

+
1

2𝑟
 𝑖 𝑣𝑖

4 + 𝑤𝑖
4 𝑑

⋅  𝑖 𝑣𝑖
2 +  𝑖𝑤𝑖

2 𝑟2

has nonnegative coefficients, 

where 𝑓 is a form in 𝑛 +𝑚 + 3 variables and of degree 4𝑑, which can be 
explicitly written from 𝑝, 𝑔𝑖 and 𝑅.



𝑝 𝑥 > 0 on 𝑥 𝑔𝑖 𝑥 ≥ 0} ⇔

∃𝑟 ∈ ℕ s. t. 𝑓 𝑣2 − 𝑤2 −
1

𝑟
 𝑖 𝑣𝑖

2 − 𝑤𝑖
2 2 𝑑

+
1

2𝑟
 𝑖 𝑣𝑖

4 + 𝑤𝑖
4 𝑑

⋅  𝑖 𝑣𝑖
2 +  𝑖𝑤𝑖

2 𝑟2

has ≥ 0 coefficients 

Proof sketch:
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An optimization-free Positivstellensatz (2/2)

𝑝 𝑥 > 0 on 𝑥 𝑔𝑖 𝑥 ≥ 0} ⇔

∃𝑟 ∈ ℕ s. t. 𝒇 𝒗𝟐 − 𝒘𝟐 −
1

𝑟
 𝑖 𝑣𝑖

2 − 𝑤𝑖
2 2 𝑑

+
1

2𝑟
 𝑖 𝑣𝑖

4 + 𝑤𝑖
4 𝑑

⋅  𝑖 𝑣𝑖
2 +  𝑖𝑤𝑖

2 𝑟2

has ≥ 0 coefficients 

𝑝 𝑥 > 0 on 𝑥 𝑔𝑖 𝑥 ≥ 0} ⇔

∃𝑟 ∈ ℕ s. t. 𝒇 𝒗𝟐 − 𝒘𝟐 −
1

𝑟
 𝑖 𝑣𝑖

2 − 𝑤𝑖
2 2 𝑑

+
𝟏

𝟐𝒓
 𝒊 𝒗𝒊

𝟒 + 𝒘𝒊
𝟒 𝒅

⋅  𝒊𝒗𝒊
𝟐 +  𝒊𝒘𝒊

𝟐 𝒓𝟐

has ≥ 𝟎 coefficients 

𝑝 𝑥 > 0 on 𝑥 𝑔𝑖 𝑥 ≥ 0} ⇔

∃𝑟 ∈ ℕ s. t. 𝒇 𝒗𝟐 −𝒘𝟐 −
𝟏

𝒓
 𝒊 𝒗𝒊

𝟐 − 𝒘𝒊
𝟐 𝟐 𝒅

+
𝟏

𝟐𝒓
 𝒊 𝒗𝒊

𝟒 + 𝒘𝒊
𝟒 𝒅

⋅  𝒊𝒗𝒊
𝟐 +  𝒊𝒘𝒊

𝟐 𝒓𝟐

has ≥ 𝟎 coefficients 

• 𝑝 𝑥 > 0 on 𝑥 𝑔𝑖 𝑥 ≥ 0} ⇔ 𝑓 is pd

• Result by Polya (1928):

𝑓 even and pd ⇒ ∃𝑟 ∈ ℕ such that 𝑓 𝑧 ⋅  𝑖 𝑧𝑖
2 𝑟

has nonnegative coefficients.

• Make 𝑓(𝑧) even by considering 𝒇 𝒗𝟐 −𝒘𝟐 . We lose positive definiteness of 

𝑓 with this transformation.

• Add the positive definite term 
𝟏

𝟐𝒓
 𝒊 𝒗𝒊

𝟒 +𝒘𝒊
𝟒 𝒅

to 𝑓(𝑣2 − 𝑤2) to make it 

positive definite. Apply Polya’s result.  

• The term −
𝟏

𝒓
 𝒊 𝒗𝒊

𝟐 −𝒘𝒊
𝟐 𝟐 𝒅

ensures that the converse holds as well.

As a corollary, gives LP/SOCP-based converging hierarchies… 

(Even forms with nonnegative coefficients are trivially dsos.)



Part 2: 
Asymptotic Stability of

Polynomial Vector Fields 
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Asymptotic stability

Example

Locally Asymp. Stable (LAS) if Globally Asymp. Stable (GAS) if

polynomial with 
rational coefficients



Complexity of deciding asymptotic stability? 

What if deg(f)>1? …
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Complexity of deciding asymptotic stability? 

Thm: Deciding (local or global) asymptotic stability of cubic 
vector fields is strongly NP-hard.

[AAA]

(In particular, this rules out tests based on polynomially-sized convex 
programs.)

Conjecture of Arnol’d (1976): undecidable  (still open)

Fact: Existence of polynomial Lyapunov functions, together 

with a computable upper bound on the degree would imply 
decidability (e.g., by quantifier elimination)

What if deg(f)>1? …



Thm: Deciding asymptotic stability of cubic homogeneous 
vector fields is strongly NP-hard.

All monomials in      have the same degree

Local Asymptotic Stability = Global Asymptotic Stability

Homogeneous means:



Proof

ONE-IN-THREE 3SAT

Thm: Deciding asymptotic stability of cubic homogeneous 
vector fields is strongly NP-hard.

Reduction from: 

Goal: Design a cubic differential equation which is a.s. iff
ONE-IN-THREE 3SAT has no solution



28

Proof (cont’d)

ONE-IN-THREE 
3SAT

Positivity of 
quartic forms

Asymptotic stability of
cubic homogeneous 

vector fields
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Proof (cont’d)

Thm: Let            be a homogeneous polynomial. Then,
is positive definite                                         is GAS

Proof:

Apply Lyapunov’s theorem.

implies strict decrease…



Proof:
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Nonexistence of polynomial Lyapunov functions (1/4)

System is GAS.Claim 1:

Claim 2: No polynomial Lyapunov 
function (of any degree) exists!

[AAA, Krstic, Parrilo, CDC’11]
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Nonexistence of polynomial Lyapunov functions (2/4)

Claim 2: No polynomial Lyapunov 
function (of any degree) exists!

Proof:

Impossible.  

• No rational Lyapunov function 
either [AAA, El Khadir ’18].

• But a quadratic Lyapunov
function locally.  



Proof:
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Nonexistence of polynomial Lyapunov functions (3/4)

System is GAS.Claim 1:

Claim 2: No polynomial Lyapunov
function (of any degree) even locally!

[AAA, El Khadir, Systems & Control Letters’18]



Proof idea:
Suppose we had one:
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Nonexistence of polynomial Lyapunov functions (4/4)

Claim 2: No polynomial Lyapunov
function (of any degree) even locally!





 A polynomial must be constant on the unit 
level set of 𝑊 𝑥, 𝑦 = 𝑥4 + 𝑦4 / 𝑥2 + 𝑦2



Let’s end on a positive note!
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Thm. A homogeneous polynomial 
vector field is asymptotically stable iff it 
admits a rational Lyapunov function of 
the type

where 𝑝 is a homogeneous polynomial.

[AAA, El Khadir, TAC, accepted with minor revision]

• We show that 𝑉 and −  𝑉 both have “strict SOS certificates.”
 𝑉 can be found by SDP! 

• Useful also for local asym. stability of non-homogeneous systems.

• We show that unlike the linear case, the degree of 𝑉 cannot be 
bounded as a function of the dimension and degree of 𝑓.



Main messages

35Want to know more? aaa.princeton.edu

• SDP-free alternatives to SOS
• DSOS/SDSOS (LP and SOCP)
• Infeasibility certificates 

based on poly-poly 
multiplication

POS

SOS

?

• No pseudo-poly-time algorithm 
for asymptotic stability of poly 
vector fields

• Polynomail Lyapunov function 
can fail even locally

• Rational Lyapunov functions 
deserve more attention 


