Robust to Dynamics Optimization

Amir Ali Ahmadi

Princeton, ORFE (PACM, COS, MAE)

Oktay Gunluk

IBM Watson Research Center

RDO (informally)

- You solve a constrained optimization problem today
- An external dynamical system may move your optimal point in the future and make it infeasible
- You want your initial decision to be "safe enough" to not let this happen

Normal situation

At the time of earthquake

Robust to Dynamics Optimization (RDO)

An RDO is describe by two pieces of input:

1) An optimization problem:
$$\min_x \{f(x) : x \in \Omega\}$$

2) A dynamical system: $x_{k+1} = g(x_k)$ (discrete time case)

RDO is then the following problem:

$$\min_{x_0} \{ f(x_0) : x_k \in \Omega, k = 0, 1, 2, \ldots \}$$

This talk:

Optimization Problem		Dynamics		
	Linear Program	Linear Nonlinear		
	Quadratic Program			
	Integer Program		Uncertain	
Semidefinite Program			Time-varying	
Polynomial Program,		Hybrid,		•

Agenda for the rest of the talk

- 1) Robust to linear dynamics linear programming
- 2) Stability of uncertain/time-varying systems
 - The joint spectral radius (JSR)
 - SDP-based techniques for bounding the JSR
- 3) Robust to uncertain dynamics linear programming

R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

Classical LP:

$$\min_{x} \{ c^T x : Ax \le b \}$$

Robust LP:

$$\min_{x} \{ c^T x : Ax \le b, \forall A \in \mathbb{A}, b \in \mathbb{B} \}$$

R-LD-LP:

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

Input data: A, b, c, G

Alternative form:

$$\min_{x} \{ c^{T} x : Ax \le b, AGx \le b, AG^{2} x \le b, AG^{3} x \le b, \dots \}$$

(An infinite LP)

$$\mathcal{S} := \bigcap \{ x | AG^k x \le b \}$$

An example...

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 3 \end{bmatrix}, c = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, G = \begin{bmatrix} 0.6 & -0.4 \\ 0.8 & 0.5 \end{bmatrix}$$

$$S = \bigcap_{k=0}^{\infty} \{AG^k x \le b\} = \bigcap_{k=0}^{2} \{AG^k x \le b\}$$

Obvious way to get lower bounds

$$\min_{x} \{ c^{T} x : Ax \le b, AGx \le b, AG^{2} x \le b, AG^{3} x \le b, ... \}$$

Truncate!

(outer approximations to the feasible set)

Natural questions:

- Is the feasible set of R-LD-LP always a polyhedron?
- When it is, how large are the number of facets?
- Does the feasible set have a tractable description?
- How to get upper bounds?!
 - (We'll see later: from semidefinite programming)

The feasible set of an R-LD-LP

$$\mathcal{S} := \bigcap_{k=0}^{\infty} \{ x \in \mathbb{R}^n | AG^k x \le b \}$$

Theorem.

- (1) This set is always closed, convex, and invariant.
- (2) It is not always polyhedral.
- (3) Given A, b, G, and $z \in \mathbb{Q}^n$, it is NP-hard to check whether $z \in S$.

Proof of (2).

$$\{Ax \le b\}$$
 $G = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$, θ irrational

Finite convergence of outer approximations

$$\mathcal{S} := \bigcap_{k=0}^{\infty} \{ x \in \mathbb{R}^n | AG^k x \le b \}$$

$$S := \bigcap_{k=0}^{\infty} \{ x \in \mathbb{R}^n | AG^k x \le b \} \quad S_r := \bigcap_{k=0}^r \{ x \in \mathbb{R}^n | AG^k x \le b \}$$

$$S \subseteq \dots S_{r+1} \subseteq S_r \subseteq \dots \subseteq S_2 \subseteq S_1 \subseteq S_0 = P$$
.

Lemma. If $S_r = S_{r+1}$, then $S_r = S$. (Poly-time checkable condition for fixed r.)

Proposition. There are three barriers to finite convergence:

- (1) Having $\rho(G) \geq 1$.
- (2) Having the origin on the boundary of P.
- (3) Having an unbounded polyhedron P.

Barriers to finite convergence

 S_1

(1)
$$\rho(G) \ge 1$$
.

$$G = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$$

(2) The origin on the boundary of P.

$$x_1 \xrightarrow{x_2} S_1$$

(3) P unbounded.

Computing time to convergence

Theorem: If $\rho(G) < 1$, $P = \{Ax \le b\}$ is bounded and contains the origin in its interior, then

- (1) $S = S_r$ for an integer r that can be computed in time $poly(\sigma(A, b, G))$.
- (2) For any fixed $\rho^* < 1$, all instances of R-LD-LP with $\rho(G) \le \rho^*$ can be solved in time $poly(\sigma(A, b, c, G))$.

Proof idea.

Invariant ellipsoid:

$$\{x^T P x \le 1\}$$

Upper bound on the number of iterations

- Find an invariant ellipsoid defined by a positive definite matrix P
- Find a shrinkage factor $\gamma \in (0,1)$; i.e., a scalar satisfying $G^TPG \preceq \gamma P$
- Find a scalar $\alpha_2 > 0$ such that

$${Ax \le b} \subseteq {x^T Px \le \alpha_2}$$

• Find a scalar $\alpha_1 > 0$ such that

$$\{x^T P x \le \alpha_1\} \subseteq \{Ax \le b\}$$

• Let

$$r = \lceil \frac{\log \frac{\alpha_1}{\alpha_2}}{\log \gamma} \rceil$$

Finding an invariant ellipsoid

• Computation of P.

To find an invariant ellipsoid for G, we solve the linear system

$$G^T P G - P = -I.$$

where I is the $n \times n$ identity matrix. This is called the Lyapunov equation.

The matrix P will automatically turn out to be positive definite.

Finding the shrinkage factor

• Computation of γ .

$$\gamma = 1 - \frac{1}{\max_{i} \{ P_{ii} + \sum_{j \neq i} |P_{i,j}| \}}.$$

Proof idea.

$$x^T G^T P G x = x^T P x - x^T x$$

$$\leq x^T P x (1 - \eta)$$

where η is any number such that

$$\eta x^T P x \leq x^T x$$

Shrinkage is at least
$$1 - \frac{1}{\lambda_{max}(P)}$$

$$\lambda_{max}(P) \le \max_{i} \{P_{ii} + \sum_{j \ne i} |P_{i,j}|\}.$$

PRINCETON UNIVERSITY

(Bound from Greshgorin's circle theorem)

Finding the outer ellipsoid

• Computation of α_2 . By solving, e.g., n LPs, we can place our polytope $\{Ax \leq b\}$ in a box; i.e., compute 2n scalars l_i, u_i such that

$${Ax \le b} \subseteq {l_i \le x_i \le u_i}.$$

We then bound $x^T P x = \sum_{i,j} P_{i,j} x_i x_j$ term by term to get α_2 :

$$\alpha_2 = \sum_{i,j} \max\{P_{i,j}u_iu_j, P_{i,j}l_il_j, P_{i,j}u_il_j, P_{i,j}l_iu_j\}.$$

This ensures that $\{l_i \leq x_i \leq u_i\} \subseteq \{x^T P x \leq \alpha_2\}$. Hence, $\{Ax \leq b\} \subseteq \{x^T P x \leq \alpha_2\}$.

Finding the inner ellipsoid

• Computation of α_1 . For i = 1, ..., m, we compute a scalar η_i by solving the convex program $\eta_i := \min_x \{a_i^T x : x^T P x \le 1\},$

where a_i is the *i*-th row of the constraint matrix A. This problem has a closed form solution:

$$\eta_i = -\sqrt{a_i^T P^{-1} a_i}.$$

Note that P^{-1} exists since $P \succ 0$. We then let

$$\alpha_1 = \min_i \{ \frac{b_i^2}{\eta_i^2} \}.$$

Recap

R-LD-LP:

$$\min_{x} \{ c^T x : Ax \le b, AGx \le b, AG^2 x \le b, AG^3 x \le b, ... \}$$

$$\mathcal{S} := \bigcap_{k=0}^{\infty} \{ x \in \mathbb{R}^n | AG^k x \le b \}$$

Outer approximations:

(gives lower bounds on the optimal value)

$$S_r := \bigcap_{k=0}^r \{ x \in \mathbb{R}^n | AG^k x \le b \}$$

$$S \subseteq \ldots S_{r+1} \subseteq S_r \subseteq \ldots \subseteq S_2 \subseteq S_1 \subseteq S_0 = P$$
.

What about upper bounds? Need inner approximations!

Upper bounds on R-LD-LP via SDP

 Goal: Find the best invariant ellipsoid inside the original polytope and optimize over that.

$$[\forall z, z^T P_{z \leq 1} \Rightarrow A_{z \leq 5}]$$

Non-convex formulation (even after the application of the S-lemma)

Upper bounds on R-LD-LP via SDP

• If we parameterize in terms of P^{-1} instead, then it becomes convex!

An improving sequence of SDPs

Goal: Find the best point that lands in an invariant set.

min
$$C^T x$$

 χ, P
 $C^T x$
 $\chi^T P x \leq 1$
 $\chi^T P x \leq 1$
 $\chi^T P x \leq 1$
 $\chi^T P x \leq 1$

An example

$$A = \begin{pmatrix} 1 & 0 \\ -1.5 & 0 \\ 0 & 1 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad c = -(0.5 \ 1), \quad G = \frac{4}{5} \begin{pmatrix} \cos(\theta) & \sin(\theta), \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \text{ where } \theta = \frac{\pi}{6}.$$

Thm. The SDP upper bound monotonically improves and gives the exact optimal value of R-LD-LP in r^* steps, where r^* is polynomially computable.

Another interpretation

LP

+

Uncertain & time-varying linear systems

R-ULD-LP

Robust to uncertain linear dynamics linear programming (R-ULD-LP)

$$x_{k+1} \in conv\{G_1, \dots, G_s\}x_k$$

Models uncertainty and variations with time in the dynamics

$$\min_{x} \{ c^T x : AGx \le b, \forall G \in \mathbb{G}^* \} \quad \text{(An infinite LP)}$$

 \mathbb{G}^* : set of all finite products of G_1, \dots, G_s

The joint spectral radius: Upper bounds via SDP

The Joint Spectral Radius

Given a finite set of n imes n matrices $\mathcal{G} = \{G_1, \dots, G_s\}$

Joint spectral radius (JSR):

$$\rho(\mathcal{G}) = \lim_{k \to \infty} \max_{\sigma \in \{1, \dots, s\}^k} ||G_{\sigma_1} \dots G_{\sigma_k}||^{1/k}$$

If only one matrix:

$$\mathcal{G} = \{G\}$$

Spectral Radius

$$\rho(G) = \lim_{k \to \infty} ||G^k||^{1/k}$$

JSR and Uncertain&Time-Varying Linear Systems

Linear dynamics:
$$x_{k+1} = Gx_k$$

Spectral radius:
$$\rho(G) = \lim_{k \to \infty} ||G^k||^{1/k}$$

"Stable" iff
$$\rho(G) < 1$$

Uncertain and time-varying linear dynamics:

$$x_{k+1} \in conv\{G_1, \dots, G_s\}x_k$$

Joint spectral radius (JSR):

$$\rho(\mathcal{G}) = \lim_{k \to \infty} \max_{\sigma \in \{1, \dots, s\}^k} ||G_{\sigma_1} \dots G_{\sigma_k}||^{1/k} \setminus_{G}$$

"Uniformly stable" iff $ho(\mathcal{G}) < 1$

Computation of JSR

If only one matrix: $\mathcal{G} = \{G\}$

Testing if " $\rho(G) < 1$ " can be done in poly time.

For more than one matrix:

(even for 2 matrices of size 47x47)

Testing if " $\rho(\mathcal{G}) \leq 1$ " is undecidable.

[Blondel, Tsitsiklis]

Goal: compute upper bounds on the JSR

(equivalently, give sufficient conditions for uniform stability)

Common Lyapunov function

$$x_{k+1} \in conv\{G_1, \dots, G_s\}x_k$$

If we can find a function $V(x):\mathbb{R}^n o \mathbb{R}$

such that

$$V(x) > 0, \forall x \neq 0$$

$$V(x) > 0, \forall x \neq 0$$

$$V(G_i x) < V(x), \forall x \neq 0, i = 1, \dots, s$$

then,
$$\rho(\mathcal{G}) < 1$$

- Such a function always exists!
- May be extremely hard to find. Can easily fail to be quadratic.

$$P \succ 0, G_i^T P G_i \leq P, \forall i$$

Can be infeasible even if JSR<1

Multiple Lyapunov functions

Representation of Lyapunov inequalities via labeled graphs

[AAA, Jungers, Parrilo, Roozbehani SIAM J. on Control and Opt]

(Best SICON Paper Prize, 2013-2015)

Path-complete graphs

Defn. A labeled directed graph G(N,E) is path-complete if for every word of finite length there is an associated directed path which reads that word.

Path-completeness can be checked with standard algorithms in automata theory

Path-complete graphs and stability

THM. If Lyapunov functions satisfying Lyapunov inequalities associated with **any path-complete graph** are found, then the dynamical system is uniformly stable (i.e., JSR<1).

- Gives immediate proofs for existing methods
- Introduces numerous new methods

Special cases

$$G_1^T P_1 G_1 \leq P_1 \quad P_{1,2} \succ 0$$

 $G_1^T P_2 G_1 \leq P_1$
 $G_2^T P_1 G_2 \leq P_2$
 $G_2^T P_2 G_2 \leq P_2$

max-of-quadratics

$$G_1^T P_1 G_1 \leq P_1 \quad P_{1,2} \succ 0$$

 $G_1^T P_1 G_1 \leq P_2$
 $G_2^T P_2 G_2 \leq P_1$
 $G_2^T P_2 G_2 \leq P_2$

min-of-quadratics

Approximation guarantees

min-of-quadratics

max-of-quadratics

$$\frac{1}{\sqrt[4]{n}}\hat{\rho}(\mathcal{G}) \le \rho(\mathcal{G}) \le \hat{\rho}(\mathcal{G})$$

- proof relies on the John's ellipsoid thm

THM. Given any desired accuracy

$$\frac{1}{\sqrt[2l]{n}}\hat{\rho}(\mathcal{G}) \le \rho(\mathcal{G}) \le \hat{\rho}(\mathcal{G})$$

we can explicitly construct a graph G (with s^{l-1} nodes) such that the corresponding SDP achieves the accuracy.

Back to R-ULD-LP

R-ULD-LP

Robust to uncertain linear dynamics linear programming (R-ULD-LP)

$$x_{k+1} \in conv\{G_1, \dots, G_s\}x_k$$

Models uncertainty and variations with time in the dynamics

$$\min_{x} \{ c^T x : AGx \le b, \forall G \in \mathbb{G}^* \} \quad \text{(An infinite LP)}$$

 \mathbb{G}^* : set of all finite products of G_1, \dots, G_s

Finite convergence of outer approximations

$$\mathcal{S} := \bigcap_{k=0}^{\infty} \{ x \in \mathbb{R}^n | AGx \le b, \forall G \in \mathcal{G}^* \} \quad S_r := \bigcap_{k=0}^r \{ x \in \mathbb{R}^n | AGx \le b, \forall G \in \mathcal{G}^k \}$$

$$S_r := \bigcap_{k=0}^r \{ x \in \mathbb{R}^n | AGx \le b, \forall G \in \mathcal{G}^k \}$$

$$S \subseteq \ldots S_{r+1} \subseteq S_r \subseteq \ldots \subseteq S_2 \subseteq S_1 \subseteq S_0 = P$$
.

Joint spectral radius (JSR):

$$\rho(G_1, \dots, G_S) = \lim_{k \to \infty} \max_{\sigma \in \{1, \dots, S\}^m} ||G_{\sigma_1} \cdots G_{\sigma_k}||^{\frac{1}{k}}$$

Theorem. If $\rho(G_1, ..., G_s) < 1$, and $P = \{Ax \leq b\}$ is bounded and contains the origin in its interior, then $S = S_r$, for some r.

(However, number of facets of S is typically very large.)

Lower and upper bounds for R-ULD-LP

To get lower bounds, truncate the sequence and solve an LP.
 For example,

 $\min_{x} \{ c^{T} x : Ax \le b, AG_{1}x \le b, AG_{1}G_{2}x \le b, \dots, AG_{1}G_{2}G_{1}x \le b \}$

What about upper bounds?

Invariant ellipsoid may not exist even when JSR<1

Idea: search for intersection of ellipsoids instead!

- The convexification tricks go through!
- Finite convergence of upper bounds is guaranteed.

$$c^T x$$

s.t.
$$Q_1 \succ 0, Q_2 \succ 0$$

$$G_1Q_1G_1^T \preceq Q_1$$

$$G_2Q_1G_2^T \preceq Q_2$$

$$G_1Q_2G_1^T \preceq Q_1$$

$$G_2 Q_2 G_2^T \preceq Q_2$$

$$\begin{bmatrix} Q_1 & \tilde{G}x \\ (\tilde{G}x)^T & 1 \end{bmatrix} \succeq 0, \ \forall \tilde{G} \in \mathcal{G}^r$$

$$\begin{bmatrix} Q_2 & \tilde{G}x \\ (\tilde{G}x)^T & 1 \end{bmatrix} \succeq 0, \ \forall \tilde{G} \in \mathcal{G}^r$$

$$a_i^T Q_1 a_i \le 1$$

$$a_i^T Q_2 a_i \leq 1$$

$$A\tilde{G}x \leq 1, \ \forall \tilde{G} \in \mathcal{G}^k, k = 0, \dots, r-1$$

A numerical example of an R-ULD-LP

$$A = \begin{pmatrix} 1 & 0 \\ -1.5 & 0 \\ 0 & 1 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, c = \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}, G_1 = \begin{pmatrix} -1/4 - 1/4 \\ -1 & 0 \end{pmatrix}, \text{ and } G_2 = \begin{pmatrix} 3/4 & 3/4 \\ -1/2 & 1/4 \end{pmatrix}.$$

	r = 0	r=1	r=2
Lower bounds	-1.3333	-0.9444	-0.8889
Upper bounds	-0.7395	-0.8029	-0.8669

The broader perspective

Optimization problems with dynamical systems (DS) constraints

minimize f(x)subject to $x \in \Omega \cap \Omega_{DS}$.

Optimization Problem " f, Ω "	Type of Dynamical System "g"	DS Constraint " Ω_{DS} "
Linear program*	Linear*	Invariance*
Convex quadratic program*	Linear and uncertain/stochastic	Inclusion in region of attraction
Semidefinite program	Linear and time-varying*	Collision avoidance
Robust linear program	Nonlinear (polynomial)	Reachability
Polynomial program	Nonlinear and time-varying	Orbital stability
Integer program	Discrete/continuous/hybrid of both	Stochastic stability
:		

CDC'15 + Journal preprint in preparation: http://aaa.princeton.edu

42