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RDO (informally)

e You solve a constrained optimization problem today

e An external dynamical system may move your optimal point in the future
and make it infeasible

e You want your initial decision to be “safe enough” to not let this happen
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At the time of earthquake

Normal situation

Earthquake-resistant structures
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Robust to Dynamics Optimization (RDO)

An RDO is describe by two pieces of input:
1) An optimization problem: mm{f(a?) S Q}
£

2) A dynamical system: T4 = g(%k) (discrete time case)

RDO is then the following problem:

min{ f(xo) : 2 € L, k=0,1,2,...}
70

This talk: Optimization Problem Dynamics
IW | Linear |
Quadratic Program Nonlinear
Integer Program Uncertain
Semidefinite Program Time-varying
mmcmN - Polynomial Program, ... Hybrid, ...
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Agenda for the rest of the talk

1) Robust to linear dynamics linear programming

2) Stability of uncertain/time-varying systems
 The joint spectral radius (JSR)
 SDP-based techniques for bounding the JSR

3) Robust to uncertain dynamics linear programming




R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

min{c’x: Ax < b}
X

min{c’x: Ax < b,VA € A,b € B}
X

HliIl{CTil?o Av, <0, k=0,1,2,...;051 = Goy |
Lo
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R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)
min{c' xo: Az <0, k=0,1,2,... 041 = Gy}
L)
Input data: 4, b,c, G

Alternative form:

min{c'x: Ax < b,AGx < b,AG*x < b,AG>x < b, ...}
X

Feasible set of R-LD-LP: o0
S:= ({z] AG"z <b)
W e S k=0



An example...
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S =Nj_o {AG*x < b} =n%_, {AG*x < b}
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Obvious way to get lower bounds

min{c'x: Ax < b,AGx < b,AG*x < b,AG>x < b, ..|}
X

(outer approximations to the feasible set)

e |sthe feasible set of R-LD-LP always a polyhedron?
e When itis, how large are the number of facets?
e Does the feasible set have a tractable description?

e How to get upper bounds?!
— (WEe’ll see later: from semidefinite programming)
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The feasible set of an R-LD-LP

S:=(){z € R"| AG"z < b}

k=0
Theorem.

(1) This set is always closed, convex, and invariant.
(2) It is not always polyhedral.
(3) Given A, b, G, and z € Q", it is NP-hard to check whether z € S.

Proof of (2).

(Ax <b) G = ( cos(6) sin(0)

_ sin(6) cos(@))’ 6 irrational
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Finite convergence of outer approximations

S = ﬂ{x c R" AGF < b} Sy :i= ﬂ{a: e R"| AGEz < b}
k=0 k=0

SC...8.1CS8.C...CSCS CSy=P

Lemma. If S, = §,.,1,then §,. = S§.
(Poly-time checkable condition for fixed r.)

Proposition. There are three barriers to finite convergence:
(1) Having p(G) > 1.

(2) Having the origin on the boundary of P.

(3) Having an unbounded polyhedron P.
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Barriers to finite convergence

(1) p(G) = 1.

(2) The origin on the boundary of P. G = [
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(3) P unIggounded.
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Computing time to convergence

Theorem: If p(G) < 1, P = {Ax < b} is bounded and
contains the origin in its interior, then

(1) S = S, for an integer r that can be computed in time
poly(a(A, b, G)).

(2) For any fixed p* < 1, all instances of R-LD-LP with
p(G) < p* can be solved in time poly(a(4, b, ¢, G)).

Proof idea.

Invariant ellipsoid:
xTPx < 1}

(.-l PRINCETON -
UNIVERSITY =

12



Upper bound on the number of iterations

e F'ind an invariant ellipsoid defined by a positive definite matrix F
e Find a shrinkage factor v € (0, 1); i.e., a scalar satisfying G' PG < P
e Iind a scalar ao > 0 such that

{Az < b} C {z! Pz < as}

e Find a scalar vy > 0 such that

{21 Pr <o} C{Az <b}

o Let o

log as
log v

r=| 1
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Finding an invariant ellipsoid

e Computation of P.

To find an invariant ellipsoid for G, we solve the linear system

G'PG—P=—1I.

where [ is the n x n identity matrix. This is called the Lyapunov equation.

The matrix P will automatically turn out to be positive definite.
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Finding the shrinkage factor

o Computation of ~.
v=1 1
maX@-{P@'@' + Zj;éi |P’&J’}

Proof idea.

rPGT PGa !l Py — a2l
vt Pu(1 —1n)

where 7 1s any number such that

IA

nel Pe < ot

Shrinkage is at least 1 — - - P Amaz(P) < 111?-X{Pm: T Z P}
max ! J#Q

(Bound from Greshgorin’s circle theorem) ;¢
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Finding the outer ellipsoid

e Computation of as. By solving, e.g., n LPs, we can place our polytope {Ax < b} in a box;
l.e., compute 2n scalars [;, u; such that

We then bound x! Pz = i Pijrizy term by term to get ao:
v = Z InaX{Pg_ﬁj'u_i;u.j, Pi_‘.jl?jlj, Bﬁj'uilj: Piﬁ,jl-i'uj}-
0]
This ensures that {l; < z; < u;} C {z! Pz < as}. Hence, {Axz < b} C {z! Pz < as}.
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Finding the inner ellipsoid

e Computation of ay. Fori =1....,m, we compute a scalar n; by solving the convex program

ni := min{al z : 2! Px < 1},
X

where a; is the i-th row of the constraint matrix A. This problem has a closed form solution:

i = —1/ Q;P_la.i.

Note that P! exists since P = 0. We then let

b2
a1 = min{—5}.
I
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Recap
R-LD-LP:
mln{c X: Ax<bAGx<bAsz<bAG3x<b )

ﬂ{az e R"| AGFz < b}

k=0
Outer approximations: .
(gives lower bounds on Sy 1= ﬂ {r € R"| AG*z < b}
the optimal value) k=0

SC...8.1CS. C...CSCS CSy=P

What about upper bounds? Need inner approximations!

PRINCETON ~ ms 18
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Upper bounds on R-LD-LP via SDP

e Goal: Find the best invariant ellipsoid inside the original
polytope and optimize over that. I

min - ol
1P

P bo

(,fPG\{P

X Pagl

W%, T Pegl = Azsb)

Non-convex formulation
(even after the application of the S-lemma)
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Upper bounds on R-LD-LP via SDP

* |If we parameterize in terms of P~ linstead, then it becomes
convex!
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An improving sequence of SDPs

e Goal: Find the best point that lands in an invariant set.

min - ot
1P

P bo

(,TPGW{P

X Pagl

W%, T Pegl = Azsb)
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An example

(1 0)

1.5 0 !
B ' |1 B 4 [ cos(f) sin(h), o
A= 8 _11 b=, ] = (051), G= - (—sin(@) cos(é’)) where 0 = c
\ 1o 1
(|
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Thm. The SDP upper bound monotonically improves and gives the
exact optimal value of R-LD-LP in r* steps, where r* is polynomially

computable.
PRINCETON ma { 22
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r=0

r=1
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Another interpretation
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LP
=k

Uncertain & time-varying
linear systems

. 1]
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24



R-ULD-LP
Robust to uncertain linear dynamics linear programming (R-ULD-LP)
G

Tpr1 € conv{Gy,...,Gs}xy "

G

Models uncertainty and variations with time in the dynamics

min{c’x: AGx < b,VG € G*}
X

G™: set of all finite products of G, ..., G

= el Input data: 4, b, ¢, Gy, ..., G 2




The joint spectral radius:
Upper bounds via SDP

. 1]
UNIVERSITY mmo
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The Joint Spectral Radius

Given a finite set of 72 X 1 matrices (j = {Gl, Cee Gs}

p(G) = lim max HGGI...G%Hl/k

k—oo oe{l,...,s}k

If only one matrix:

G ={G}

: ki 11/k
p(G) = lim [|G*||" i
G. C. Rota and W. G. Strang
A note on the joint spectral radius

Indag. Math., 22:379-381, 1960.
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JSR and Uncertain&Time-Varying Linear Systems

Linear dynamics: xrpr1 = Gy
Spectral radius: o(G) = klggo ||Gk|]1/"’

“Stable” iff p(G) < 1

Uncertain and time-varying linear dynamics:
Tri1 € conv{Gy,...,Gslxp
Joint spectral radius (JSR):

o 1/k
p(G) = lim max}k||Ggl...G0kH |

k—oo oe{l,...,s

“Uniformly stable” iff p(G) < 1

S

€
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Computation of JSR

If only one matrix: § = {G}
Testing if “p(G) < 1”7 can be done in poly time.

For more than one matrix: Theory and Appications
(even for 2 matrices of size 47x47)

Testing if “p(G) < 17 is undecidable.
[Blondel, Tsitsiklis]

compute upper bounds on the JSR

(equivalently, give sufficient conditions for uniform stability)

PRINCETON ~ms 29
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Common Lyapunov function

Tri1 € conv{Gy,...,

If we can find a function V(:zj) -R" = R

V(z) > 0,¥z # 0 —
V(Gixr) < V(x),Ve #£0,i=1,...,5

then, p(G) < 1

e Such a function always exists!

such that

e May be extremely hard to find. Can easily fail to be quadratic.

P~ 0,G; PG; X P,¥i @
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Multiple Lyapunov functions

Representation of Lyapunov inequalities via labeled graphs

Gy

[AAA, Jungers, Parrilo, Roozbehani
SIAM J. on Control and Opt]

(Best SICON Paper Prize, 2013-2015)

RINCETON 2 "What property of the graph implies stability?

UNIVERSITY =

GF{PlGl j Pl
GIRP,G, = P,
GIPGy < P,
Gi PGy = P

Pl,g > ()
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Path-complete graphs

Defn. A labeled directed graph G(N,E) is path-complete if for
every word of finite length there is an associated directed path
which reads that word.

=Path-completeness can
be checked with standard
algorithms in automata

theory
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Path-complete graphs and stability

THM. If Lyapunov functions satisfying Lyapunov inequalities
associated with any path-complete graph are found,
then the dynamical system is uniformly stable (i.e., JSR<1).

(a)

2 AE
S0l - gip°

A4 A
"Gives immediate proofs |® 4
for existing methods 4
A2Al
AI

AZ
A2
: (v )4, 4>
"Introduces numerous o 1A
Cﬁ)ﬂf

new methods
@) 4 M) ,

Qo0 |
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Special cases

Gy Gs max-of-quadratics
(& o9 V(z) = max{a” P, 27 Pyr)

min-of-quadratics
V(z) = min{z’ Pz, 2" Pyx}

GIP G, =< P
GIPG, < P,
Gy PGy < Py
Gy PGy = Py
PRINCETON mm 34
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Approximation guarantees
min-of-quadratics max-of-quadratics

@o eo
L_5(G) < p(G) < H(G)

n
- proof relies on the John’s ellipsoid thm

THM. Given any desired accuracy

%;ﬁ,a(g) < p(G) < H(Q)

we can explicitly construct a graph G (with s"* nodes)

such that the corresponding SDP achieves the accuracy.
Winn & 3




Back to R-ULD-LP
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R-ULD-LP
Robust to uncertain linear dynamics linear programming (R-ULD-LP)
G

Tpr1 € conv{Gy,...,Gs}xy "

G

Models uncertainty and variations with time in the dynamics

min{c’x: AGx < b,VG € G*}
X

G™: set of all finite products of G, ..., G

= el Input data: 4, b, ¢, Gy, ..., G 3




Finite convergence of outer approximations

S = m{:r: e R"| AGx < b,VG € G*} |S, = ﬂ{x e R"| AGx < b,VG € g““}
k=0 k=0

SC...8.1CS.C...CSCS CSy=P

1
p(Glr e GS) — 111_{130 maXO‘E{l,...,S}m ”Go-l Go-k | |k

Theorem. If p(G4, ...,G;) < 1,and P = {Ax < b} is bounded and
contains the origin in its interior, then S = §,., for some 7.

(However, number of facets of S is typically very large.)

PRINCETON == 38
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Lower and upper bounds for R-ULD-LP

e To get lower bounds, truncate the sequence and solve an LP.
For example,

min{CTx:Ax < b,AGlx < b,AGlex < b, ...,AGleGlx < b}
X

e What about upper bounds? mih  C'x

(.-l PRINCETON HH' 39
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Idea: search for intersection of ellipsoids instead!

minimize CT-:L‘-

zER™ Q1 p€SMX T

s.t. Q1> 0,02 =0
G1Q1G] 2 Q
G2Q1G5 = Qs
G1Q:G = Q
G2Q2G5 = Qs

e The convexification tricks

i Ql é.l» -~ T
go through! (Gx)T 1 =0, ¥Geg
e Finite convergence of : o .
, Q%Gi’ -0, VG €G"
upper bounds is (Gz)' 1]
guaranteed. al Qra; <1
al Qaa; < 1

AGr <1, VG e G k=0,....r—1

PRINCETC.. __ . 40
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A numerical example of an R-ULD-LP

(o) 0
I e H S R E e U )
Vo)
(a) 7 =0 (b) r=1 (c) r=2
r =20 r=1 r=2

Lower bounds | -1.3333 | -0.9444 | -0.8889
Upper bounds | -0.7395 | -0.8029 | -0.8669
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The broader perspective

Optimization problems with dynamical systems (DS) constraints

minimize
subject to x €

Optimization Problem “f )7

f(x)

ONQpg.

1Yk

Type of Dynamical System “g

F > > > > > > > >

X1

DS Constraint “{2pg”

Linear program*

Convex quadratic program™
Semidefinite program
Robust linear program
Polynomial program
Integer program

CDC’15

Linear*

Linear and uncertain/stochastic
Linear and time-varying*
Nonlinear (polynomial)

Nonlinear and time-varying
Discrete/continuous/hybrid of both

+ Journal preprint in preparation:

Invariance™

Inclusion in region of attraction
Collision avoidance
Reachability

Orbital stability

Stochastic stability
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