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What is this talk about?

1. Introduction to sum of squares (sos) 
programming
Underlying numerical engine: SDP

2. “dsos and sdsos” programming
Underlying numerical engine: LP/SOCP

“Optimization over nonnegative polynomials”

Joint work with Anirudha Majumdar (MIT)
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Optimization over Nonnegative Polynomials

Ex. Decide if the following polynomial is nonnegative:

Ex.

Basic semialgebraic set:

Ubiquitous in computational mathematics!



Why would you want 
to do this?!

Let’s start with four application areas…
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1. Polynomial Optimization

Many applications:

Decidable, but intractable 
(includes your favorite NP-complete problem)

Equivalent 
formulation:

Combinatorial optimization

Option pricing with moment information

The optimal power flow (OPF) problem

Sensor network localization

…



2. Infeasibility Certificates in Discrete Optimization
PARTITION

Note that the YES answer is easy to certify.

 How would you certify a NO answer? 



2. Infeasibility Certificates in Discrete Optimization
PARTITION

Infeasible iff



2. Discrete Optimization (Cont’d.)

How many final exams can the President schedule 
on the same day at UCL, such that no student has to 
take more than one?

Nodes: course numbers

Edges: iff there is at least one student who is taking 
both courses

Need the independent set number of the graph



How to certify optimality?

A theorem of Motzkin & Straus (1965):

is nonnegative.

Similar algebraic formulations for other combinatorial optimization problems…

if and only if 



3. Dynamical Systems & Trajectory Optimization

Equilibrium populations Spread of epidemicsDynamics of prices

Properties of interest:
•Stability of equilibrium points
•Boundedness of trajectories
•Invariance
•Safety, collision avoidance
•…

Robotics
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What does this have to do with optimization?

Questions about
dynamical systems

(e.g. stability, safety)

Search for functions 
satisfying certain properties 

(e.g. nonnegativity,convexity)

Lyapunov
Theory

GAS

Lyapunov 
function

Ex. Lyapunov’s 
stability theorem.

(similar local version)
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• Shape-constrained
regression

– e.g., convex regression

4: Statistics and Machine Learning

• Clustering with semialgebraic sets

[AAA, Luss, Malioutov, ’14]
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How would you prove nonnegativity?

Ex. Decide if the following polynomial is nonnegative:

Not so easy! (In fact, NP-hard for degree ≥ 4)

But what if I told you:

Natural questions:
•Is it any easier to test for a sum of squares (SOS) decomposition?
•Is every nonnegative polynomial SOS? 
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Sum of Squares and Semidefinite Programming

Q. Is it any easier to decide sos?

Yes!  Can be reduced to a semidefinite program (SDP)

A broad generalization of linear programs 

Can be solved efficiently (e.g., using interior point algorithms)

Can also efficiently search and optimize over sos polynomials

Numerous applications…

[Lasserre], [Nesterov], [Parrilo]

[Nesterov, Nemirovski], [Alizadeh]
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SOSSDP

where z is the vector of monomials of degree up to d

The set of such matrices Q forms the feasible set of an SDP.
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Example



Lyapunov theory with sum of squares (sos) techniques
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Lyapunov 
function

Ex. Lyapunov’s 
stability theorem.

(similar local version)

 GAS
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Global stability

 GAS
Example.

Output of SDP solver:
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Motzkin (1967):

Robinson (1973):

Hilbert’s 1888 Paper

n,d 2 4 ≥6

1 yes yes yes

2 yes yes no

3 yes no no

≥4 yes no no

n,d 2 4 ≥6

1 yes yes yes

2 yes yes yes

3 yes yes no

≥4 yes no no

Polynomials
Forms  

(homog. polynomials)
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Q. SOS

?
Nonnegativity



Failure of converse implications for Lyapunov analysis
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[AAA,Parrilo]

• Globally asymptotically stable.

• But no polynomial Lyapunov function of any degree exists!

[AAA, Krstic, Parrilo]



These examples are to be expected for complexity reasons
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Thm: Deciding (local or global) asymptotic stability of cubic 
vector fields is strongly NP-hard.

[AAA]

Implication:
•Unless P=NP, there cannot be any polynomial time 
(or even pseudo-polynomial time) algorithm.

•In particular, the size of SOS certificates must be at 
least exponential.
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Similar NP-hardness results for other problems

1. Inclusion of the unit ball in region of attraction (d=3)

2. Invariance of the unit ball (d=3)

3. Invariance of a quartic semialgebraic set (d=1)

4. Boundedness of trajectories (d=3)

5. Stability in the sense of Lyapunov (d=4)

6. Local attractivity (d=3)

7. Local collision avoidance (d=4)

8. Existence of a quadratic Lyapunov function (d=3)

9. Existence of a stabilizing control law (d=3)

10. Local asymptotic stability for trigonometric vector fields (d=4)

[AAA, Majumdar, Tedrake]
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The good news

In relatively small dimensions and degrees, it seems difficult to 
construct nonnegative polynomials that are not sos

Especially true if additional structure is required

For example, the following is OPEN:

Construct a convex, nonnegative polynomial that is not sos

(known to exist in high dimensions via a non-constructive proof of Blekherman)

Empirical evidence from various domains over the last decade:

SOS is a very powerful relaxation.
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Hilbert’s 17th Problem (1900)

p nonnegative 
?

Q. 

Artin (1927): Yes!
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Positivstellensatz: a complete algebraic proof system

Let’s motivate it with a toy example:

Consider the task of proving the statement:

Short algebraic proof (certificate):

The Positivstellensatz vastly generalizes what happened here:

 Algebraic certificates of infeasibility of any system of 
polynomial inequalities (or algebraic implications among them)

 Automated proof system (via semidefinite programming)
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Positivstellensatz: a generalization of Farkas lemma

Farkas lemma (1902):

is infeasible 

(The S-lemma is also a theorem of this type for quadratics)
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Positivstellensatz
Stengle 
(1974):

Comments:

 Hilbert’s 17th problem is a straightforward corollary

 Other versions due to Shmudgen and Putinar (can look simpler)
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Parrilo/Lasserre SDP hierarchies

Recall POP:

Idea:

Comments:

 Each fixed level of the hierarchy is an SDP of polynomial size

 Originally, Parrilo’s hierarchy is based on Stengle’s Psatz, whereas 
Lasserre’s is based on Putinar’s Psatz
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Local stability – SOS on the Acrobot

[Majumdar, AAA, Tedrake ]
(Best paper award - IEEE Conf. on Robotics and Automation, ’13)

Swing-up:

Balance:

Controller 
designed by SOS

(4-state system)

https://www.youtube.com/watch?v=FeCwtvrD76I

https://www.youtube.com/watch?v=FeCwtvrD76I
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DSOS and SDSOS
Optimization
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Practical limitations of SOS

• Scalability is often a real challenge!!

Thm: p(x) of degree 2d is sos if and only if

• The size of the Gram matrix is:

• Polynomial in n for fixed d, but grows quickly

• The semidefinite constraint is expensive

• E.g., local stability analysis of a 20-state cubic vector field is typically 
an SDP with ~1.2M decision variables and ~200k constraints
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Many interesting approaches to tackle this issue…

• Techniques for exploiting structure (e.g., symmetry and sparsity)

• [Gatermann, Parrilo], [Vallentin], [de Klerk, Sotirov], [Papachristodoulou 
et al.], …

• Customized algorithms (e.g., first order or parallel methods)

• [Bertsimas, Freund, Sun], [Nie, Wang], [Peet et al.], …

• Let’s not work with SOS to begin with…

• Give other sufficient conditions for nonnegativity that are 
perhaps stronger than SOS, but hopefully cheaper

Our approach [AAA, Majumdar]:
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Not totally clear a priori how to do this…

1) All polynomials that are sums of 4th powers of polynomials

2) All polynomials that are sums of 3 squares of polynomials

Both sets are clearly inside the SOS cone

Consider, e.g., the following two sets:

• But linear optimization over either set is intractable!

• So set inclusion doesn’t mean anything in terms of complexity

• We have to work a bit harder…
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dsos and sdsos

Defn. A polynomial p is diagonally-dominant-sum-of-squares
(dsos) if it can be written as:

for some monomials 
and some nonnegative constants

Defn. A polynomial p is scaled-diagonally-dominant-sum-of-
squares (sdsos) if it can be written as:

for some monomials 
and some constants

Obvious:
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r-dsos and r-sdsos

Defn. A polynomial p is r-diagonally-dominant-sum-of-
squares (r-dsos) if 

is dsos.

Defn. A polynomial p is r-scaled-diagonally-dominant-sum-
of-squares (r-sdsos) if

is sdsos.

Allows us to develop a hierarchy of relaxations…
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dd and sdd matrices

Defn. A symmetric matrix A is diagonally dominant (dd) if

Defn*. A symmetric matrix A is scaled diagonally dominant 
(sdd) if there exists a diagonal matrix D>0 s.t.

DAD is dd.

*Thanks to Pablo Parrilo for telling us about sdd matrices.

Greshgorin’s circle theorem
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Optimization over these sets is an SDP, SOCP, LP !!
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Two natural matrix programs: DDP and SDPP

LP:

SDP:

SDDP:

DDP:
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From matrices to polynomials
Thm. A polynomial p is dsos

if and only if

Thm. A polynomial p is sdsos

if and only if
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Optimization over r-dsos and r-dsos polynomials

• Can be done by LP and SOCP respectively!

• Commercial solvers such as CPLEX and GUROBI are very mature 
(very fast, deal with numerical issues)

• iSOS: add-on to SPOTless (package by Megretski, Tobenkin, Permenter –MIT) 

https://github.com/spot-toolbox/spotless

How well does it do?!
• We show encouraging experiments from:

Control, polynomial optimization, statistics, copositive 
programming, cominatorial optimization, options pricing, 
sparse PCA, etc.

• And we’ll give Positivstellensatz results (converse results)



41

First observation: r-dsos can outperform sos

psd but not sos!

The Motzkin polynomial:

…but it’s 2-dsos.
(certificate of nonnegativity using LP)

Another ternary sextic:

not sos but 1-dsos (hence psd)
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A parametric family of polynomials

Compactify:
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Minimizing a form on the sphere
• degree=4; all coefficients 

present – generated randomly

n=10 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -1.920 1.01

sos (mosek) -1.920 0.184

sdsos -5.046 0.152

dsos -5.312 0.067

BARON -175.4 0.35
n=30 Lower 

bound
Run 
time
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -36.038 9.431

dsos -36.850 8.256

BARON -28546.1

n=15 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -3.263 165.3

sos (mosek) -3.263 5.537

sdsos -10.433 0.444

dsos -10.957 0.370

BARON -1079.9 0.62
n=40 Lower 

bound
Run 
time 
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -61.248 53.95

dsos -62.2954 26.02

n=20 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -3.579 5749

sos (mosek) -3.579 79.06

sdsos -17.333 1.935

dsos -18.015 1.301

BARON -5287.9 3.69
n=50 Lower 

bound
Run 
time 
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -93.22 100.5

dsos -94.25 72.79

• PC: 3.4 GHz, 

16 Gb RAM
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Convex regression

Best convex polynomial fit of degree d

d=2 Max
Error

Run 
time 
(secs)

sos (mosek) 21.282 ~1

sdsos 33.918 ~1

dsos 35.108 ~1

d=4 Max
Error

Run 
time 
(secs)

sos (mosek) --------- ∞

sdsos 12.936 231

dsos 14.859 150

(sd)sos constraint in 40 variables:

Observation:
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Some control applications
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Stabilizing the inverted N-link pendulum (2N states)

N=1
N=2

N=6

Runtime:

ROA volume ratio:

(w/ Majumdar, Tedrake)
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Stabilizing ATLAS

[Majumdar, AAA, Tedrake]

Done by SDSOS Optimization

• 30 states        14 control inputs    Cubic dynamics

https://www.youtube.com/watch?v=lmAT556Ar5c

https://www.youtube.com/watch?v=lmAT556Ar5c
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Lyapunov Barrier Certificates

needs safety verification

unsafe (or forbidden) set

Safety assured if we find a “Lyapunov function” such that:

(vector valued polynomial)

(both sets semialgebraic)
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Real-time collision avoidance

(w/ Majumdar)

Done by 
SDSOS Optimization

Dubins car model

Run-time: 20 ms
https://www.youtube.com/watch?v=J3a6v0tlsD4

https://www.youtube.com/watch?v=J3a6v0tlsD4
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Converse results 1&2

Thm. Any even positive definite form p is r-dsos for some r.

Thm. Any positive definite bivariate form p is r-sdsos for some r.

• Proof follows from a result of Reznick (1995)

• p.||x||rwill always become a sum of powers of linear forms for 
sufficiently large r.



51

Converse result 3 & Polynomial Optimization

Thm. For any positive definite form p, there exists an integer 
r and a polynomial q of degree r such that

q is dsos and pq is dsos.

• Similar to the Lasserre/Parrilo SDP 
hierarchies, polynomial optimization can be 
solved to global optimality using hierarchies 
of LP and SOCP coming from dsos and sdsos.

• Search for q is an LP

• Such a q is a certificate of nonnegativity of p

• Proof follows from a result of Habicht (1940) on Hilbert’s 17th

problem
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Ongoing directions…

(w/ G. Hall, 
S. Dash, IBM)

Iterative DSOS via 
- Column generation

- Cholesky change of basis
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Main messages…
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Many applications

Cool and classical theory

Rejuvenated thanks to
modern interface with 
computation and optimization

Move from SDP to LP and SOCP
New possibilities likely to become within reach

Want to know more? aaa.princeton.edu
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