Nonnegative Polynomials in Optimization and Control

Amir Ali Ahmadi

Princeton University

Dept. of Operations Research and Financial Engineering (ORFE)

What is this talk about?

"Optimization over nonnegative polynomials"

1. Introduction to sum of squares (sos) programming

Underlying numerical engine: SDP

2. "dsos and sdsos" programming
Underlying numerical engine: LP/SOCP

Joint work with Anirudha Majumdar (MIT)

Optimization over Nonnegative Polynomials

Defn. A polynomial $p(x) := p(x_1, ..., x_n)$ is nonnegative if $p(x) \ge 0$, $\forall x \in \mathbb{R}^n$.

Ex. Decide if the following polynomial is nonnegative:

$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_3^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3 - 14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$$

Basic semialgebraic set:

$$\{x \in \mathbb{R}^n | f_i(x) \ge 0, h_i(x) = 0\}$$

Ex.
$$2x_1 + 5x_1^2x_2 - x_3 \ge 0$$

 $5 - x_1^3 + 2x_1x_3 = 0$

Why would you want to do this?!

Let's start with four application areas...

1. Polynomial Optimization

$$\min_{x} p(x)$$

$$f_i(x) \le 0$$

$$h_i(x) = 0$$

Decidable, but intractable (includes your favorite NP-complete problem)

Equivalent
$$\max_{\gamma} \gamma$$
 formulation:
$$p(x) - \gamma \geq 0$$

$$\forall x \in \{f_i(x) \le 0, \ h_i(x) = 0\}$$

Many applications:

- Combinatorial optimization
- Option pricing with moment information
- ■The optimal power flow (OPF) problem
- Sensor network localization

2. Infeasibility Certificates in Discrete Optimization

PARTITION

■Input: A list of positive integers $a_1, ..., a_n$.

Question: Can you split them into to bags such that the sum in one equals the sum in the other?

{5,2,1,6,3,8,5,4,1,1,10}

- ■Note that the YES answer is easy to certify.
- How would you certify a NO answer?

2. Infeasibility Certificates in Discrete Optimization

PARTITION

- ■Input: A list of positive integers $a_1, ..., a_n$.
- **Question:** Can you split them into to bags such that the sum in one equals the sum in the other?

$$[a_1, a_2, \ldots, a_n]$$

$$\exists ? \ x_i \in \{-1, 1\} \text{ s.t. } \sum_{i=1}^n x_i a_i = 0$$

Infeasible iff
$$\sum_{i=1}^{n} (x_i^2 - 1)^2 + (\sum_{i=1}^{n} x_i a_i)^2 > 0$$

2. Discrete Optimization (Cont'd.)

■How many final exams can the President schedule on the same day at UCL, such that no student has to take more than one?

■Need the **independent set number** of the graph

How to certify optimality?

A theorem of Motzkin & Straus (1965):

$$\alpha(G) \leq k$$
 if and only if
$$-2k\sum_{(i,j)\in \overline{E}} x_i x_j y_i y_j - (1-k) \left(\sum_{i=1}^n x_i^2\right) \left(\sum_{i=1}^n y_i^2\right)$$

is nonnegative.

Similar algebraic formulations for other combinatorial optimization problems...

3. Dynamical Systems & Trajectory Optimization

$$\dot{x} = f(x)$$
$$x_{k+1} = f(x_k)$$

Properties of interest:

- Stability of equilibrium points
- Boundedness of trajectories
- Invariance
- Safety, collision avoidance

• ...

Dynamics of prices

Equilibrium populations

Spread of epidemics

Robotics

What does this have to do with optimization?

Questions about dynamical systems (e.g. stability, safety)

Search for functions satisfying certain properties (e.g. nonnegativity,convexity)

Ex. Lyapunov's stability theorem.

$$\dot{x} = f(x)$$

Lyapunov
$$V(x): \mathbb{R}^n \to \mathbb{R}$$
 function $\dot{V}(x) = \langle \frac{\partial V}{\partial x}, f(x) \rangle$ $V(x) = \langle 0 \Rightarrow \text{GAS} \rangle$

4: Statistics and Machine Learning

- Shape-constrained regression
 - e.g., convex regression

$$p(x)$$
 convex $\Leftrightarrow y^T \nabla^2 p(x) y$ psd

Clustering with semialgebraic sets

How would you prove nonnegativity?

Ex. Decide if the following polynomial is nonnegative:

$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_3^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3 - 14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$$

- Not so easy! (In fact, NP-hard for degree ≥ 4)
- ■But what if I told you:

$$p(x) = (x_1^2 - 3x_1x_2 + x_1x_3 + 2x_3^2)^2 + (x_1x_3 - x_2x_3)^2 + (4x_2^2 - x_3^2)^2.$$

Natural questions:

- •Is it any easier to test for a sum of squares (SOS) decomposition?
- •Is every nonnegative polynomial SOS?

Sum of Squares and Semidefinite Programming

[Lasserre], [Nesterov], [Parrilo]

Q. Is it any easier to decide sos?

- Yes! Can be reduced to a semidefinite program (SDP)
 - A broad generalization of linear programs
 - —Can be solved efficiently (e.g., using interior point algorithms)

[Nesterov, Nemirovski], [Alizadeh]

- Can also efficiently search and optimize over sos polynomials
- •Numerous applications...

SOS→SDP

Thm: A polynomial p(x) of degree **2d** is sos if and only if there exists a matrix Q such that

$$Q \geqslant 0$$
,
 $p(x) = z(x)^T Q z(x)$,

where z is the vector of monomials of degree up to d

$$z = [1, x_1, x_2, \dots, x_n, x_1 x_2, \dots, x_n^d]^T$$

The set of such matrices Q forms the feasible set of an SDP.

Example

$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_3^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3 - 14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$$

$$p(x) = z^T Q z$$
 $z = (x_1^2, x_1 x_2, x_2^2, x_1 x_3, x_2 x_3, x_3^2)^T$

$$Q = \begin{pmatrix} 1 & -3 & 0 & 1 & 0 & 2 \\ -3 & 9 & 0 & -3 & 0 & -6 \\ 0 & 0 & 16 & 0 & 0 & -4 \\ 1 & -3 & 0 & 2 & -1 & 2 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 2 & -6 & 4 & 2 & 0 & 5 \end{pmatrix}$$

$$Q = \sum_{i=1}^{3} a_i a_i^T$$

$$a_1 = (1, -3, 0, 1, 0, 2)^T$$
, $a_2 = (0, 0, 0, 1, -1, 0)^T$, $a_3 = (0, 0, 4, 0, 0, -1)^T$

$$p(x) = (x_1^2 - 3x_1x_2 + x_1x_3 + 2x_3^2)^2 + (x_1x_3 - x_2x_3)^2 + (4x_2^2 - x_3^2)^2.$$

Lyapunov theory with sum of squares (sos) techniques

Ex. Lyapunov's stability theorem.

Global stability

$$\begin{array}{ccc} V(x) & \cos & V(x) > 0 \\ -\dot{V}(x) & \cos & \Rightarrow -\dot{V}(x) > 0 \end{array} \Rightarrow \mathsf{GAS}$$

Example.

$$\dot{x_1} = -0.15x_1^7 + 200x_1^6x_2 - 10.5x_1^5x_2^2 - 807x_1^4x_2^3 + 14x_1^3x_2^4 + 600x_1^2x_2^5 - 3.5x_1x_2^6 + 9x_2^7$$

$$\dot{x_2} = -9x_1^7 - 3.5x_1^6x_2 - 600x_1^5x_2^2 + 14x_1^4x_2^3 + 807x_1^3x_2^4 - 10.5x_1^2x_2^5 - 200x_1x_2^6 - 0.15x_2^7$$

Output of SDP solver:

$$V = 0.02x_1^8 + 0.015x_1^7x_2 + 1.743x_1^6x_2^2 - 0.106x_1^5x_2^3 - 3.517x_1^4x_2^4$$

$$+0.106x_1^3x_2^5 + 1.743x_1^2x_2^6 - 0.015x_1x_2^7 + 0.02x_2^8.$$

Hilbert's 1888 Paper

Q. SOS Nonnegativity

Polynomials

n,d	2	4	≥6
1	yes	yes	yes
2	yes	yes	no
3	yes	no	no
≥4	yes	no	no

(homog. polynomials)

(mornog: porymorniais)				
n,d	2	4	≥6	
1	yes	yes	yes	
2	yes	yes	yes	
3	yes	yes	n	
≥4	yes	no	no	

Motzkin (1967):

$$M(x_1, x_2, x_3) = x_1^4 x_2^2 + x_1^2 x_2^4 - 3x_1^2 x_2^2 x_3^2 + x_3^6$$

Robinson (1973):

$$R(x_1, x_2, x_3, x_4) =$$

$$R(x_1, x_2, x_3, x_4) = x_1^2(x_1 - x_4)^2 + x_2^2(x_2 - x_4)^2 + x_3^2(x_3 - x_4)^2 + 2x_1x_2x_3(x_1 + x_2 + x_3 - 2x_4)$$

Failure of converse implications for Lyapunov analysis

$$\dot{x_1} = -x_1^3 x_2^2 + 2x_1^3 x_2 - x_1^3 + 4x_1^2 x_2^2 - 8x_1^2 x_2 + 4x_1^2 - x_1 x_2^4 + 4x_1 x_2^3 - 4x_1 + 10x_2^2
\dot{x_2} = -9x_1^2 x_2 + 10x_1^2 + 2x_1 x_2^3 - 8x_1 x_2^2 - 4x_1 - x_2^3 + 4x_2^2 - 4x_2$$

- $V(x) = x_1^2 + x_2^2$ proves GAS.
- SOS fails to find any quadratic Lyapunov function.

$$\dot{x} = -x + xy$$
 [AAA, Krstic, Parrilo] $\dot{y} = -y$

- Globally asymptotically stable.
- But no polynomial Lyapunov function of any degree exists!

These examples are to be expected for complexity reasons

Thm: Deciding (local or global) asymptotic stability of cubic vector fields is strongly NP-hard.

[AAA]

Implication:

- •Unless P=NP, there cannot be *any* polynomial time (or even pseudo-polynomial time) algorithm.
- •In particular, the size of SOS certificates must be at least exponential.

Similar NP-hardness results for other problems

- 1. Inclusion of the unit ball in region of attraction (d=3)
- 2. Invariance of the unit ball (d=3)
- 3. Invariance of a quartic semialgebraic set (d=1)
- 4. Boundedness of trajectories (d=3)
- 5. Stability in the sense of Lyapunov (d=4)
- 6. Local attractivity (d=3)
- 7. Local collision avoidance (d=4)
- 8. Existence of a quadratic Lyapunov function (d=3)
- 9. Existence of a stabilizing control law (d=3)
- 10. Local asymptotic stability for trigonometric vector fields (d=4)

The good news

- ■In relatively small dimensions and degrees, it seems difficult to construct nonnegative polynomials that are not sos
- Especially true if additional structure is required
- ■For example, the following is OPEN:

Construct a *convex*, nonnegative polynomial that is not sos

(known to exist in high dimensions via a non-constructive proof of Blekherman)

■Empirical evidence from various domains over the last decade:

SOS is a very powerful relaxation.

Hilbert's 17th Problem (1900)

Q.
$$p$$
 nonnegative $\Rightarrow p = \sum_{i} \left(\frac{g_i}{q_i}\right)^2$

- Artin (1927): Yes!
- Implications:
 - $p \ge 0 \Rightarrow \exists h \text{ sos } \text{such that } p.h \text{ sos }$
 - **Reznick:** (under mild conditions) can take $h = (\sum_i x_i^2)^r$
 - Certificates of nonnegativity can always be given with sos (i.e., with semidefinite programming)!
 - We'll see how the Positivstellensatz generalizes this even further

Positivstellensatz: a complete algebraic proof system

Let's motivate it with a toy example:

Consider the task of proving the statement:

$$\forall a, b, c, x, \ ax^2 + bx + c = 0 \Rightarrow b^2 - 4ac \ge 0$$

Short algebraic proof (certificate):

$$b^{2} - 4ac = (2ax + b)^{2} - 4a(ax^{2} + bx + c)$$

- ■The Positivstellensatz vastly generalizes what happened here:
 - Algebraic certificates of infeasibility of any system of polynomial inequalities (or algebraic implications among them)
 - Automated proof system (via semidefinite programming)

Positivstellensatz: a generalization of Farkas lemma

Farkas lemma (1902):

$$Ax = b$$
 and $x \ge 0$ is infeasible

There exists a y such that $y^TA \ge 0$ and $y^Tb < 0$.

(The S-lemma is also a theorem of this type for quadratics)

Positivstellensatz

Stengle (1974):

The basic semialgebraic set

$$K := \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, k\}$$

is empty

there exist polynomials t_1, \ldots, t_k and sum of squares polynomials $s_0, s_1, \ldots, s_m, s_{12}, s_{13}, \ldots, s_{m-1m}, s_{123}, \ldots, s_{m-2m-1m}, \ldots, s_{12\dots m}$ such that

$$-1 = \sum_{i=1}^{k} t_i(x)h_i(x) + s_0(x) + \sum_{\{i\}} s_i(x)g_i(x) + \sum_{\{i,j\}} s_{ij}(x)g_i(x)g_j(x) + \sum_{\{i,j,k\}} s_{ijk}(x)g_i(x)g_j(x)g_k(x) + \cdots + s_{ijk...m}(x)g_i(x)g_j(x)g_k(x) \dots g_m(x).$$

- Comments:
 - Hilbert's 17th problem is a straightforward corollary
- Other versions due to Shmudgen and Putinar (can look simpler)

 PRINCETON UNIVERSITY

 OTHER VERSION SIMPLER

 PRINCETON UNIVERSITY

Parrilo/Lasserre SDP hierarchies

Recall POP:

minimize
$$p(x)$$

subject to $x \in K := \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, h_i(x) = 0\}$

Idea:

obtain the largest lower bound by finding the largest γ for which the set $\{x \in K, p(x) \leq \gamma\}$ is empty.

certify this emptiness by finding Positivstellensatz certificates.

$$-1 = \sum_{i=1}^{k} t_i(x)h_i(x) + s_0(x) + \sum_{\{i\}} s_i(x)g_i(x) + \sum_{\{i,j\}} s_{ij}(x)g_i(x)g_j(x) + \sum_{\{i,j,k\}} s_{ijk}(x)g_i(x)g_j(x)g_k(x) + \cdots + s_{ijk...m}(x)g_i(x)g_j(x)g_k(x) \dots g_m(x)$$

In level l of the hierarchy, degree of the polynomials t_i and the sos polynomials s_i is bounded by l.

Comments:

- Each fixed level of the hierarchy is an SDP of polynomial size
- Originally, Parrilo's hierarchy is based on Stengle's Psatz, whereas
 Lasserre's is based on Putinar's Psatz

Local stability – SOS on the Acrobot

https://www.youtube.com/watch?v=FeCwtvrD76I

(4-state system)

Controller designed by SOS

[Majumdar, AAA, Tedrake]

DSOS and SDSOS Optimization

Practical limitations of SOS

Scalability is often a real challenge!!

Thm: p(x) of degree **2d** is sos if and only if

$$p(x) = z^{T}Qz \quad Q \succeq 0$$

 $z = [1, x_1, x_2, \dots, x_n, x_1x_2, \dots, x_n^d]^T$

• The size of the Gram matrix is:

$$\binom{n+d}{d} \times \binom{n+d}{d}$$

- Polynomial in *n* for fixed *d*, but grows quickly
 - The semidefinite constraint is expensive
- E.g., local stability analysis of a 20-state cubic vector field is typically an SDP with ~1.2M decision variables and ~200k constraints

Many interesting approaches to tackle this issue...

- Techniques for exploiting structure (e.g., symmetry and sparsity)
 - [Gatermann, Parrilo], [Vallentin], [de Klerk, Sotirov], [Papachristodoulou et al.], ...
- Customized algorithms (e.g., first order or parallel methods)
 - [Bertsimas, Freund, Sun], [Nie, Wang], [Peet et al.], ...

Our approach [AAA, Majumdar]:

• Let's not work with SOS to begin with...

• Give other sufficient conditions for non

perhaps stronger than SOS, but hopefully cheaper

Not totally clear a priori how to do this...

Consider, e.g., the following two sets:

- 1) All polynomials that are sums of 4th powers of polynomials
- 2) All polynomials that are sums of 3 squares of polynomials

Both sets are clearly inside the SOS cone

- But linear optimization over either set is intractable!
- So set inclusion doesn't mean anything in terms of complexity
- We have to work a bit harder...

dsos and sdsos

Defn. A polynomial p is diagonally-dominant-sum-of-squares (dsos) if it can be written as:

$$p = \sum_{i} \alpha_{i} m_{i}^{2} + \sum_{i,j} \beta_{ij}^{+} (m_{i} + m_{j})^{2} + \beta_{ij}^{-} (m_{i} - m_{j})^{2},$$

for some monomials m_i, m_j and some nonnegative constants $\alpha_i, \beta_{i,j}$.

Defn. A polynomial p is scaled-diagonally-dominant-sum-ofsquares (sdsos) if it can be written as:

$$p = \sum_{i} \alpha_{i} m_{i}^{2} + \sum_{i,j} (\beta_{i}^{+} m_{i} + \gamma_{j}^{+} m_{j})^{2} + (\beta_{i}^{-} m_{i} - \gamma_{j}^{-} m_{j})^{2},$$

for some monomials m_i, m_j and some constants $\alpha_i \geq 0, \beta_i, \gamma_i$.

r-dsos and r-sdsos

Defn. A polynomial p is r-diagonally-dominant-sum-of-squares (r-dsos) if

 $p \cdot \left(\sum_{i} x_i^2\right)^r$

is dsos.

Defn. A polynomial p is r-scaled-diagonally-dominant-sum-of-squares (r-sdsos) if

$$p \cdot \left(\sum_{i} x_i^2\right)^r$$

is sdsos.

Allows us to develop a *hierarchy* of relaxations...

dd and sdd matrices

Defn. A symmetric matrix A is diagonally dominant (dd) if

$$a_{ii} \geq \sum_{j \neq i} |a_{ij}| \text{ for all } i.$$

Defn*. A symmetric matrix A is scaled diagonally dominant (sdd) if there exists a diagonal matrix D>0 s.t.

DAD is dd.

$$dd \Rightarrow sdd \Rightarrow psd$$

Greshgorin's circle theorem

Optimization over these sets is an SDP, SOCP, LP!!

Two natural matrix programs: DDP and SDPP

$$\min\langle C, X \rangle$$

$$A(X) = b$$

X diagonal&nonnegative

$$\min\langle C, X \rangle$$

DDP:

$$A(X) = b$$

$$X \, \mathrm{dd}$$

SDDP:

$$\min\langle C, X \rangle$$

$$A(X) = b$$

$$X$$
 sdd

SDP:

$$\min\langle C, X \rangle$$

$$A(X) = b$$

From matrices to polynomials

Thm. A polynomial p is dsos

$$p = \sum_{i} \alpha_{i} m_{i}^{2} + \sum_{i,j} \beta_{ij}^{+} (m_{i} + m_{j})^{2} + \beta_{ij}^{-} (m_{i} - m_{j})^{2},$$

if and only if

$$p(x) = z^{T}(x)Qz(x)$$

$$Q \ dd$$

Thm. A polynomial *p* is *sdsos*

$$p = \sum_{i} \alpha_{i} m_{i}^{2} + \sum_{i,j} (\beta_{i}^{+} m_{i} + \gamma_{j}^{+} m_{j})^{2} + (\beta_{i}^{-} m_{i} - \gamma_{j}^{-} m_{j})^{2},$$

if and only if

$$p(x) = z^{T}(x)Qz(x)$$
$$Q \ sdd$$

Optimization over r-dsos and r-dsos polynomials

- Can be done by LP and SOCP respectively!
- Commercial solvers such as CPLEX and GUROBI are very mature (very fast, deal with numerical issues)
- iSOS: add-on to SPOTIess (package by Megretski, Tobenkin, Permenter –MIT)

https://github.com/spot-toolbox/spotless

How well does it do?!

- We show encouraging experiments from:
 Control, polynomial optimization, statistics, copositive programming, cominatorial optimization, options pricing, sparse PCA, etc.
- And we'll give Positivstellensatz results (converse results)

First observation: r-dsos can outperform sos

The Motzkin polynomial:

$$M(x_1, x_2, x_3) = x_1^4 x_2^2 + x_1^2 x_2^4 - 3x_1^2 x_2^2 x_3^2 + x_3^6$$

psd but not sos!

...but it's 2-dsos.

(certificate of nonnegativity using LP)

Another ternary sextic:

$$p(x_1, x_2, x_3) = x_1^4 x_2^2 + x_2^4 x_3^2 + x_3^4 x_1^2 - 3x_1^2 x_2^2 x_3^2$$

not sos but 1-dsos (hence psd)

A parametric family of polynomials

$$p(x) = 2x_1^4 + cx_2^4 + ax_1^2x_2^2 + bx_1^3x_2$$

Compactify:

$$p(x) = 2x_1^4 + (8 - a - b)x_2^4 + ax_1^2x_2^2 + bx_1^3x_2$$

Minimizing a form on the sphere

Lower

bound

-3.263

-3.263

-10.433

-10.957

-1079.9

Lower

bound

-61.248

-62.2954

$\min_{x \in \mathcal{S}^{n-}}$	p(x))
n=10	Lower	Run

SOS (sedumi)

SOS (mosek)

sdsos

dsos

BARON

SOS (sedumi)

SOS (mosek)

sdsos

dsos

BARON

n = 30

bound

-1.920

-1.920

-5.046

-5.312

-175.4

Lower

bound

-36.038

-36.850

-28546.1

present – generated randomly

time

(secs)

1.01

0.184

0.152

0.067

0.35

Run

time

 ∞

 ∞

9.431

8.256

(secs)

n=15

SOS (sedumi)

SOS (mosek)

sdsos

dsos

BARON

SOS (sedumi)

SOS (mosek)

sdsos

dsos

n = 40

degree=4; all coefficients

Run

time

(secs)

165.3

5.537

0.444

0.370

0.62

Run

time

(secs)

 ∞

 ∞

53.95

26.02

n=20

SOS (sedumi)

SOS (mosek)

sdsos

dsos

BARON

SOS (sedumi)

SOS (mosek)

sdsos

dsos

n=50

PC: 3.4 GHz,

Run

time

(secs)

5749

79.06

1.935

1.301

3.69

Run

time

 ∞

 ∞

(secs)

100.5

72.79

16 Gb RAM

Lower

bound

-3.579

-3.579

-17.333

-18.015

-5287.9

Lower

bound

-93.22

-94.25

Convex regression

Observation: $e^{||x||} + \text{noise}$

Best convex polynomial fit of degree d

(sd)sos constraint in 40 variables:

$$y^T H(x) y$$
 (sd)sos

d=2	Max	Run
	Error	time (secs)
		(5005)
SOS (mosek)	21.282	~1
sdsos	33.918	~1
dsos	35.108	~1

d=4	Max Error	Run time (secs)
SOS (mosek)		∞
sdsos	12.936	231
dsos	14.859	150

Some control applications

Stabilizing the inverted N-link pendulum (2N states)

N=1

N=2

(b) $\theta_6 - \dot{\theta}_6$ subspace.

Runtime:

2N (# states)	4	6	8	10	12	14	16	18	20	22
DSOS	< 1	0.44	2.04	3.08	9.67	25.1	74.2	200.5	492.0	823.2
SDSOS	< 1	0.72	6.72	7.78	25.9	92.4	189.0	424.74	846.9	1275.6
SOS (SeDuMi)	< 1	3.97	156.9	1697.5	23676.5	∞	∞	∞	∞	∞
SOS (MOSEK)	< 1	0.84	16.2	149.1	1526.5	∞	∞	∞	∞	∞

ROA volume ratio:

2N (states)	4 6		8	10	12	
$ ho_{dsos}/ ho_{sos}$	0.38	0.45	0.13	0.12	0.09	
$ ho_{sdsos}/ ho_{sos}$	0.88	0.84	0.81	0.79	0.79	

Stabilizing ATLAS

• 30 states 14 control inputs Cubic dynamics

https://www.youtube.com/watch?v=lmAT556Ar5c

Done by **SDSOS Optimization**

Lyapunov Barrier Certificates

$$\dot{x} = f(x)$$

(vector valued polynomial)

ineeds safety verification

unsafe (or forbidden) set

(both sets semialgebraic)

Safety assured if we find a "Lyapunov function" such that:

$$B(\mathcal{S}) < 0$$

$$B(\mathcal{U}) > 0$$

$$\dot{B} = \langle \nabla B(x), f(x) \rangle \le 0$$

Real-time collision avoidance

Done by **SDSOS Optimization**

Dubins car model

Run-time: 20 ms

https://www.youtube.com/watch?v=J3a6v0tlsD4

Converse results 1&2

Thm. Any **even** positive definite form p is r-dsos for some r.

- Hence proof of positivity can always be found with LP
- Proof follows from a result of Polya (1928) on Hilbert's 17th problem
- Even forms include, e.g., copositive programming!
- $r \le \alpha^2(G)$ for finding independent sets in graphs (corollary of a result of de Klerk & Pasechnik)

Thm. Any positive definite **bivariate** form p is r-sdsos for some r.

- Proof follows from a result of Reznick (1995)
 - p.//x//r will always become a sum of powers of linear forms for sufficiently large r.

Converse result 3 & Polynomial Optimization

Thm. For any positive definite form p, there exists an integer r and a **polynomial** q of degree r such that

q is dsos and pq is dsos.

- Search for q is an LP
- Such a q is a certificate of nonnegativity of p
- Proof follows from a result of Habicht (1940) on Hilbert's 17th problem

$$\min_{x} p(x)$$

$$f_i(x) \le 0$$

$$h_i(x) = 0$$

Similar to the Lasserre/Parrilo SDP
hierarchies, polynomial optimization can be
solved to global optimality using hierarchies
of LP and SOCP coming from dsos and sdsos.

Ongoing directions...

Iterative DSOS via

- Column generation
- Cholesky change of basis

S. Dash, IBM)

Main messages...

Many applications

Move from SDP to LP and SOCP

New possibilities likely to become within reach ...

References

- A. A. Ahmadi, Algebraic relaxations and hardness results in polynomial optimization and Lyapunov analysis, PhD Thesis, MIT, 2011.
- A. A. Ahmadi and A. Majumdar, DSOS and SDSOS Optimization: More Tractable Alternatives to SOS Optimization, in preparation, 2014.
- A.A. Ahmadi and P.A. Parrilo, Towards scalable algorithms with formal guarantees for Lyapunov analysis of control systems via algebraic optimization, tutorial paper, CDC 2014.
- A.A. Ahmadi and A. Majumdar, Some applications of polynomial optimization in operations research and real-time optimization, Optimization Letters, accepted for publication, 2014.
- A. Majumdar, A.A. Ahmadi, and R. Tedrake, Control and verification of high-dimensional systems with DSOS and SDSOS optimization, CDC 2014.
- A.A. Ahmadi, On the difficulty of deciding asymptotic stability of cubic vector fields, ACC 2012.
- A.A. Ahmadi, A. Majumdar, and R. Tedrake, Complexity of ten decision problems in continuous time dynamical systems, ACC 2013.
- A.A. Ahmadi, M. Krstic, and P.A. Parrilo, A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function, CDC 2012.
- A.A. Ahmadi and P.A. Parrilo, Converse results on existence of sum of squares Lyapunov functions, CDC 2012.