Complexity of Testing Existence of Solutions in Polynomial Optimization

+

A New Positivstellensatz

Amir Ali Ahmadi Princeton, ORFE Affiliated member of PACM, COS, MAE, CSML

Joint work with

Jeffrey Zhang

Princeton, ORFE

Georgina Hall

Princeton → INSEAD

Existence of solutions

Consider a polynomial optimization problem (POP):

$$\inf_{x \in \mathbb{R}^n} p(x)$$

s.t. $g_i(x) \ge 0, i = 1, ..., m$.

Suppose the optimal value is finite (i.e., POP is feasible and bounded below).

We would like to test if there exists an optimal solution, i.e.,

a feasible point
$$x^*$$
 such that $p(x^*) \leq p(y)$, $\forall y$ feasible.

Informally: "Can we replace the `inf' with a `min'?"

Remarks:

- If feasible set is bounded, a solution always exists.
- If n = 1, a solution always exists.
- Finiteness of optimal value comes as a "promise".

Motivation

- An exact algorithm cannot return a solution if there is none!
- Existence of solutions essential for algorithms that exploit optimality conditions.

[Nie, Demmel, Sturmfels, "Minimizing polynomials via sum of squares over the gradient ideal", Math. Prog. 2005]:

"This assumption [existence of minimizers] is nontrivial, and we do not address the (important and difficult) question of how to verify that a given polynomial p(x) has this property."

There are algothims that check existence of solutions:

- Greuet, Safey El Din, "Deciding reachability of the infimum of a multivariate polynomial", International Symposium on Symbolic and Algebraic Computation, 2011
- Boucero, Mourrain, "Border basis relaxation for polynomial optimization", Journal of Symbolic Computation, 2016
- Greuet, Safey El Din, "Probabilistic algorithm for polynomial optimization over a real algebraic set", SIAM J. on Optimization, 2014
- Quantifier elimination

All have running time at least exponential in dimension... Can there be a faster algorithm?

• ...

Existence of a solution guaranteed?

$$\min_{x \in \mathbb{R}^n} p(x)$$

s.t. $g_i(x) \ge 0, i = 1, ..., m$

Degree of constraints

	0	1	2
1	Yes	Yes Linear Programming	NP-hard to test (This work)
2	Yes Linear Algebra	Yes Frank, Wolfe (1956)	
3	Yes	Yes Andronov, Belousov, Shironin (1982)	
4	NP-hard to test (This work)		

Outline

- 1) NP-hardness of testing existence of solutions
- 2) Sufficient conditions for existence of solutions
 - Review of SOS and Positivstellensatze
 - b. An SOS hierarchy for coercivity
- 3) An optimization-free Positivstellensatz (brief and independent)

Outline

- 1) NP-hardness of testing existence of solutions
- 2) Sufficient conditions for existence of solutions
 - Review of SOS and Positivstellensatze
 - b. An SOS hierarchy for coercivity
- 3) An optimization-free Positivstellensatz (brief and independent)

Main hardness results

Theorem (AAA, Zhang) 6 (for this presentation)

Testing whether a degree-4 polynomial attains its unconstrained infimum is strongly NP-hard.

Theorem (AAA, Zhang)

Testing whether a degree-1 polynomial attains its infimum on a set defined by degree-2 inequalities is strongly NP-hard.

Proof: Reduction from 1-in-3 3SAT.

1-in-3 3SAT

- Input: A CNF formula with three literals per clause.
- Goal: Find a Boolean assignment so that each clause has exactly one true literal.

$$1 - 1 - 1 - 1 1 - 1 - 1 - 1 1$$

$$(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$$

$$x_1 = 1, x_2 = 1, x_3 = -1$$

$$(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

Not satisfiable.

This problem is NP-hard.

NP-hardness of checking attainment (1/2)

Goal: Given any instance of 1-in-3 3SAT, construct a polynomial that attains its infimum if and only if the instance is satisfiable

Step 1:

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

$$p_{\phi}(x) \coloneqq \sum_{i=1}^{n} \left(1 - x_i^2\right)^2 + (x_1 + x_2 - x_3 + 1)^2 + (-x_1 - x_2 + x_3 + 1)^2$$

Important Property: $p_{\phi}(x)$ has a zero if and only if ϕ is satisfiable

But $p_{\phi}(x)$ always attains its infimum (independent of whether ϕ is satisfiable) as its highest order component is $\sum_{i=1}^{n} x_i^4$.

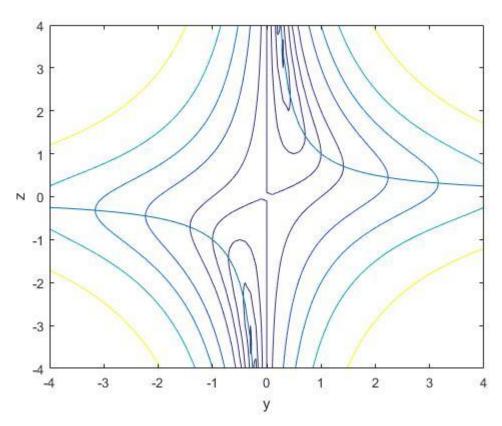
NP-hardness of checking attainment (2/2)

Step 2:

$$q_{\phi}(x_1, ..., x_n, y, z, \lambda) =$$

$$(1 - \lambda)^2 (y^2 + (1 - yz)^2) +$$

$$\lambda^2 p_{\phi}(x)$$



- Infimum is always zero (q_{ϕ} is a sum of squares; take $\lambda=0, y \to 0, z=\frac{1}{y}$).
- If ϕ satisfiable, take $\lambda = 1$, and x the satisfying assignment \rightarrow Infimum attained.
- If ϕ not satisfiable, q_{ϕ} does not vanish \rightarrow Infimum not attained.

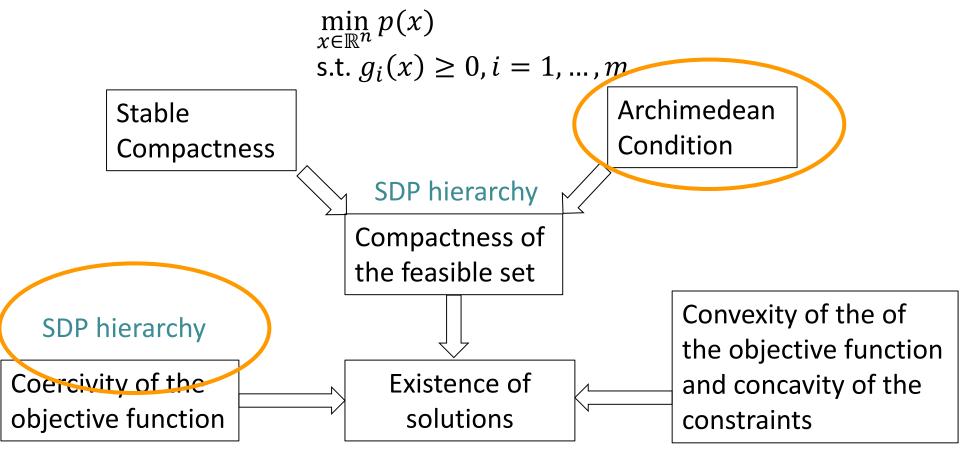
Outline

1) NP-hardness of testing existence of solutions

2) Sufficient conditions for existence of solutions

- Review of SOS and Positivstellensatze
- b. An SOS hierarchy for coercivity
- 3) An optimization-free Positivstellensatz (brief and independent)

Sufficient conditions for existence of solutions



Theorem

- Testing whether a polynomial optimization problem satisfies any of these conditions is strongly NP-hard.
- Our results are minimal in the degree.

Review of sum of squares and Positivstellensatze

How to prove positivity?

Is
$$p(x) > 0$$
 on $\{g_1(x) \ge 0, ..., g_m(x) \ge 0\}$?

Why prove positivity?

Infeasibility certificates for systems of polynomial inequalities

$$\{g_1(x) \ge 0, g_2(x) \ge 0, \dots, g_m(x) \ge 0\}$$
 empty \Leftrightarrow $-g_1(x) > 0$ on $\{g_2(x) \ge 0, \dots, g_m(x) \ge 0\}$

- (Tight) lower bounds for polynomial minimization problems
- Dynamics and control (Lyapunov functions)
- Stats/ML (shape-constrained regression),...

Sum of squares and SDP

• A polynomial p is a sum of squares (sos) if it can be written as

$$p(x) = \sum_{i} q_i^2(x),$$

where q_i are polynomials.

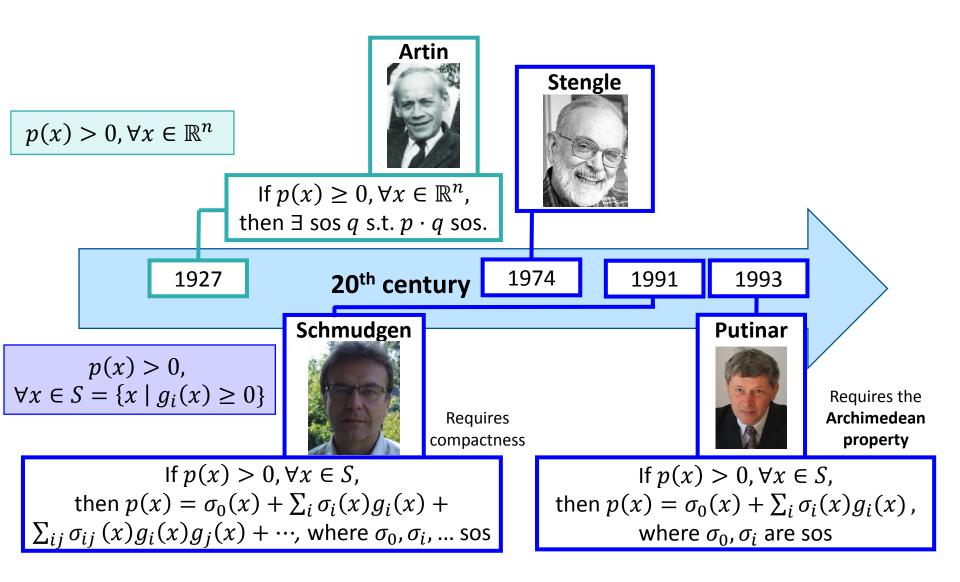
Ex:
$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_3^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3$$

 $-14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$
 $= (x_1^2 - 3x_1x_2 + x_1x_3 + 2x_3^2)^2 + (x_1x_3 - x_2x_3)^2 + (4x_2^2 - x_3^2)^2$

• A polynomial p of degree 2d is sos if and only if $\exists Q \geq 0$ such that $p(x) = z(x)^T Q z(x)$

where $z = \begin{bmatrix} 1, x_1, \dots, x_n, x_1 x_2, \dots, x_n^d \end{bmatrix}^T$ is the vector of monomials of degree up to d.

Positivstellensätze



Infeasibility proofs for polynomial (in)equalities

Stengle's Positivstellensatz

$$\{g_i(x) \ge 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., t\}$$
 infeasible

if and only if

there exist polynomials τ_i and sos polynomials σ such that

$$-1 = \sum \tau_i h_i + \sigma_0 + \sum \sigma_i g_i + \sum \sigma_{ij} g_i g_j + \sum \sigma_{ijk} g_i g_j g_k + \dots + \sigma_{1\dots m} \prod g_1 \dots g_m.$$

Search for these sos certificates of infeasibility (when deg. is fixed) ---> SDP.

Back to coercivity

Coercivity

Definition: A function f is *coercive* if for every sequence $\{x_k\}$ such that $||x_k|| \to \infty$, we have $f(x) \to \infty$.

- A coercive function attains its infimum
- Checking whether a polynomial is coercive is NP-hard

Past work:

- Jeyakumar, Lasserre (2014)
 - SDP hierarchy
- Bajbar, Stein (2015)
- Bajbar, Behrends (2017)

We provide a condition which is (i) both necessary and sufficient for a polynomial to be coercive and (ii) amenable to an SDP hierarchy

An sos hierarchy for testing coercivity (1/2)

Theorem (AAA, Zhang)

A polynomial p of degree d is coercive if and only if for some integer $r \ge 1$ the following SDP is feasible

$$-1 = \sigma_0(x,\gamma) + \sigma_1(x,\gamma)(\gamma - p(x)) + \sigma_2(x,\gamma) \left(\sum_{i=1}^n x_i^2 - \gamma^{2r} - 2^r \right) + \sigma_3(x,\gamma)(\gamma - p(x)) \left(\sum_{i=1}^n x_i^2 - \gamma^{2r} - 2^r \right),$$

$$\sigma_0 \text{ is sos and of degree } \leq 4r,$$

$$\sigma_1 \text{ is sos and of degree } \leq \max\{4r - d, 0\},$$

$$\sigma_2 \text{ is sos and of degree } \leq 2r,$$

$$\sigma_3 \text{ is sos and of degree } \leq \max\{2r - d, 0\}.$$

An sos hierarchy for testing coercivity (2/2)

A function is coercive if and only if all its sublevel sets are compact.

Theorem (AAA, Zhang)

A polynomial p is coercive if and only if there exist an even integer c>0 and a scalar $k\geq 0$ such that for all $\gamma\in\mathbb{R}$, the γ -sublevel set of p is contained within a ball of radius γ^c+k .

$$p(x) = x^{4} + y^{4} - 2x^{3} + y^{2} + 3x + y$$

Equivalently, p is coercive if and only if there exist an even integer c' and a scalar k' for which the set $\{(x, \gamma) | p(x) \le \gamma, \sum x_i^2 \ge \gamma^{c'} + k'\}$ is empty.

Coercivity hierarchy revisited

Theorem (AAA, Zhang)

A polynomial p of degree d is coercive if and only if for some integer $r \ge 1$ the following SDP is feasible

$$-1 = \sigma_0(x,\gamma) + \sigma_1(x,\gamma)(\gamma - p(x)) + \sigma_2(x,\gamma) \left(\sum_{i=1}^n x_i^2 - \gamma^{2r} - 2^r \right) + \sigma_3(x,\gamma)(\gamma - p(x)) \left(\sum_{i=1}^n x_i^2 - \gamma^{2r} - 2^r \right),$$

$$\sigma_0 \text{ is sos and of degree } \leq 4r,$$

$$\sigma_1 \text{ is sos and of degree } \leq \max\{4r - d, 0\},$$

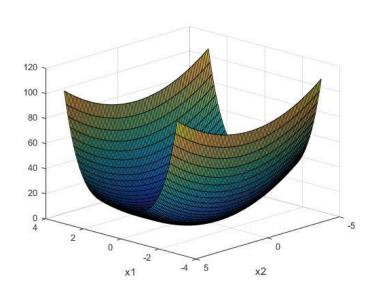
$$\sigma_2 \text{ is sos and of degree } \leq 2r,$$

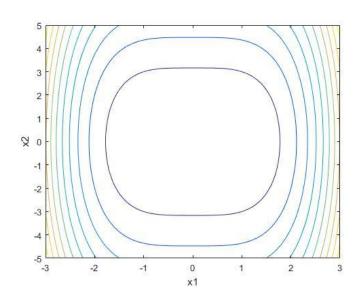
$$\sigma_3 \text{ is sos and of degree } \leq \max\{2r - d, 0\}.$$

Toy example

The polynomial $p(x) = x_1^4 + x_2^2$ is coercive as certified by the following algebraic identity:

$$-1 = \left(\frac{2}{3}\left(x_1^2 - \frac{1}{2}\right)^2 + \frac{2}{3}\left(\gamma - \frac{1}{2}\right)^2\right) + \frac{2}{3}\left(\gamma - x_1^4 - x_2^2\right) + \frac{2}{3}\left(x_1^2 + x_2^2 - \gamma^2 - 2\right)$$





Outline

- 1) NP-hardness of testing existence of solutions
- 2) Sufficient conditions for existence of solutions
 - Review of SOS and Positivstellensatze
 - b. An SOS hierarchy for coercivity
- 3) An optimization-free Positivstellensatz (brief and independent)

Recall what a Positivstellensatz establishes

$$p(x) > 0, \forall x \in \{x \in \mathbb{R}^n | g_i(x) \ge 0, i = 1, ..., m\}$$

Under the Archimedean property

$$\begin{aligned} &\text{If } p(x)>0, \forall x\in \mathcal{S},\\ &\text{then } p(x)=\sigma_0(x)+\sum_i\sigma_i(x)g_i(x)\,,\\ &\text{where } \sigma_0,\sigma_i \text{ are sos} \end{aligned}$$

Search for these sos polynomials (when degree is fixed) --->SDP. Similar situation for Psatze of Stengle and Schmudgen.

An optimization-free Positivstellensatz (1/2)

$$p(x) > 0, \forall x \in \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, ..., m\}$$

 $2d = \text{maximum degree of } p, g_i$

 $\exists r \in \mathbb{N}$ such that

$$\left(f(v^2-w^2)-\frac{1}{r}\left(\sum_{i}(v_i^2-w_i^2)^2\right)^d+\frac{1}{2r}\left(\sum_{i}(v_i^4+w_i^4)\right)^d\right)\cdot\left(\sum_{i}v_i^2+\sum_{i}w_i^2\right)^{r^2}$$

has nonnegative coefficients,

where f is a form in n+m+3 variables and of degree 4d, which can be explicitly written from p,g_i and R.

An optimization-free Positivstellensatz (2/2)

$$p(x) > 0 \text{ on } \{x \mid g_i(x) \ge 0\} \Leftrightarrow$$

$$\exists r \in \mathbb{N} \text{ s. t.} \left(f(v^2 - w^2) - \frac{1}{r} \left(\sum_i (v_i^2 - w_i^2)^2 \right)^d + \frac{1}{2r} \left(\sum_i (v_i^4 + w_i^4) \right)^d \right) \cdot \left(\sum_i v_i^2 + \sum_i w_i^2 \right)^{r^2}$$

$$\mathsf{has} \ge \mathbf{0} \text{ coefficients}$$

- p(x) > 0 on $\{x \mid g_i(x) \ge 0\} \Leftrightarrow f$ is pd
- Result by Polya (1928):

f even and pd $\Rightarrow \exists r \in \mathbb{N}$ such that $f(z) \cdot (\sum_i z_i^2)^r$ has nonnegative coefficients.

- Make f(z) even by considering $f(v^2 w^2)$. We lose positive definiteness of f with this transformation.
- Add the positive definite term $\frac{1}{2r} \left(\sum_{i} (v_i^4 + w_i^4) \right)^d$ to $f(v^2 w^2)$ to make it positive definite. Apply Polya's result.
- The term $-\frac{1}{r} \left(\sum_i (v_i^2 w_i^2)^2 \right)^d$ ensures that the converse holds as well.

Want to know more? aaa.princeton.edu

You are cordially invited...

Princeton Day of Optimization

September 28, 2018

http://orfe.princeton.edu/pdo/

D. Bertsimas

M. Dahleh

E. Hazan

P. Parrilo

B. Recht

K. Scheinberg

