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Optimization over nonnegative polynomials
Defn. A polynomial p(x) = p(x4, ..., x;,) is nonnegative if p(x) = 0, Vx € R".

Ex. Decide if the following polynomial is nonnegative:

plz) = zf-— 6:1:1332 + 2z 73 + 6x1x3 + 97272 — 6x7xoT3
—14z1 7972 + 4175 + 523 — Txixs + 1675

Basic semialgebraic set:
{z € R"| fi(z) >0, hi(z) =0}
Ex. 201 + 5:13%%2 —x3 > ()

5—9:?4—2@933:0
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1. Polynomial optimization

Decidable, but intractable
(includes your favorite NP-complete problem)

Equivalent ImMax
fc?rmL?Iaetion: Y i W/\J .
plz)—v >0 1Y
Vo € {fi(x) <0, hi(z) =0}

"Many applications:
sCombinatorial optimization

=Option pricing with moment information
*The optimal power flow (OPF) problem

mSensor network localization
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2. Infeasibility certificates in discrete optimization
=PARTITION

sInput: A list of positive integers aq, ..., a,,.

="Question: Can you split them into to bags such that the sum in one equals the sumiin
the other?

a = {5,2,1,6,3,8,5,4,1,1,10}

=A YES answer is easily verifiable.

"How would you verify a NO answer? n

2
p(x) = E (xf =1) + (@) —e=0,vx
Winom HORFE i=1
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3. Stability of dynamical systems
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Robotics

Equilibrium populations Spread of epidemics

Dynamics of prices
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Lyapunov’s theorem for local stability

Existence of Lyapunov function
Viz) : R" - R
: oV
Viz) = (-, f(z))
such that

V(ix) >0,
Vix) < B=V(kx)<0

implies {x| V(x) < B}isinthe
region of attraction (ROA).
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Global stability
V(x) sos V(g;)

Example.
7, = —0.15z] + 200x8ry — 10.5x3x35 — 807Tx{x5 + ldxiz; + 600xirs — 3.52, 15 + 9]
7y = —9r] —3.52029 — 6002725 + 1dzixs + 807x5x5 — 10.5x1x5 — 2002125 — 0.152]
o[ T g T T T T T T
16+
1t
05}
x' 0
05
At
1861
Output of SDP solver: ol
] . _ | STt 05 1 15 2
V. = 0.02z7 +0.0152]zy + 1.7432825 — 0. 1[}{)1" Jx5 — d 317'1:1?2

+0.106x5 x5 + 1.743z7x5 [_].[_1153:1.1:;’+[_1.[_123:§.
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How would you prove nonnegativity?

Ex. Decide if the following polynomial is nonnegative:

_ A 3 3 2 2 22 2
plx) = xz;—6xizs+ 273 + 6173 + 9775 — 6T{T273
—14z1 7972 + 4175 + 523 — Txixs + 1675

*Not so easy! (In fact, NP-hard for degree = 4)
=But what if | told you:

p(z) = (27 —3z129 + 7173 + 273)° + (2173 — T273)°
+(4z2 — z2)2.

Natural question:
e|s it any easier to test for a sum of squares (SOS) decomposition?
Can be reduced to a semidefinite program (SDP)!
— Can be solved to arbitrary accuracy in polynomial time.
eExtends to the “local” case (Positivstellensatz, etc.)
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Local stability — SOS on the Acrobot

Swing-up:

_ B sos 15
3 i3  -or

[ sos |

Controller
designed by SOS

[Majumdar, AAA, Tedrake ]
gf;w,ggggz ] (Best paper award - IEEE Conf. on Robotics and Automation, '13) 9



Practical limitations of SOS

Scalability is a painin the (_| )

Thm: p(x) of degree 2d is sos if and only if

p(x) =2"Qz Q=0
g = [19371;372; ey, D12, - ‘?xd]T

n

PRI

e The size of the Gram matrix is:

(4% (")

e Polynomial in n for fixed d, but grows quickly

 The semidefinite constraint is expensive

e E.g., local stability analysis of a 20-state cubic vector field is typically
an SDP with ~1.2M decision variables and ~200k constraints

UNIY
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Many interesting approaches to tackle this issue...

e Techniques for exploiting structure (e.g., symmetry and sparsity)

 [Gatermann, Parrilo], [Vallentin], [de Klerk, Sotirov], ...

e Customized algorithms (e.g., first order or parallel methods)

e [Bertsimas, Freund, Sun], [Nie, Wang], ...

Our approach [AAA, Majumdar]:

e Let’s not work with SOS to begin with...

e Give other sufficient conditions for non
perhaps stronger than SOS, but hopefully cheaper
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Not totally clear a priori how to do this...

Consider, e.g., the following two sets:

1) All polynomials that are sums of 4t" powers of polynomials

2) All polynomials that are sums of 3 squares of polynomials

POS

Both sets are clearly inside the SOS cone

e But linear optimization over either set is intractable!
e Sosetinclusion doesn’t mean anything in terms of complexity

e We have to work a bit harder...
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dsos and sdsos

Defn. A polynomial p is diagonally-dominant-sum-of-squares
(dsos) if it can be written as:

p=> ami+) Bfimi+m;)?+ B (m: —my)?,
i i

for some monomials 712, 1115
and some nonnegative constants ;. (; ;.

Defn. A polynomial p is scaled-diagonally-dominant-sum-of-
squares (sdsos) if it can be written as:

P = ZO"im?JrZ(5;Lm7:+7;rmj)2+(5¢_mi_’yj_mﬂ')2’
1 v,]

for some monomials M, 1m;
and some constants «; > 0, 3;,7;.

Obvious: psos, , € SDSOS, 4 C SOS, 4 C POS,.q 13
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r-dsos and r-sdsos

Defn. A polynomial p is r-diagonally-dominant-sum-of-
squares (r-dsos) if o
p - (Zz I‘f )

is dsos.

Defn. A polynomial p is r-scaled-diagonally-dominant-sum-
of-squares (r-sdsos) if oo
p - (Zz ir‘z’)

is sdsos.

Easy: rDSOS,qa CrSDSOS, 4 € POS, 4, r.

rDSOS,, 4 C (r+1)DSOS,, 4,Vr

g & rSDSOS,, 4 C (r+1)SDSOS,, 4,r.

14



dd and sdd matrices

Defn. A symmetric matrix A is diagonally dominant (dd) if

Qi 2 )iz |@ig| for all i.

Defn*. A symmetric matrix A is scaled diagonally dominant
(sdd) if there exists a diagonal matrix D>0 s.t.

DAD is dd.

dd = sdd = psd

Greshgorin’s circle theorem

| B *Thanks to Pablo Parrilo for telling us about sdd matrices. %>



I +xA+yB

1

A B
10 x 10
random

Y o

Optimization over these sets is an SDP, SOCP, LP !!
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Two natural matrix programs: DDP and SDPP
min(C, X)
LP: AX)=1b
X diagonal&nonnegative
min(C, X)
ppp:  A(X)=1b
X dd
sppp:  min(C, X)
AX)=0b
X sdd
min(C, X)
AX) =10
X >0

SDP:

17



From matrices to polynomials

Thm. A polynomial p is dsos

p= Zafzm +ZB (mi +m;)* + B (mi —m;)?

if and only if p(:c) = Z (:C)QZ(ZC>
Q dd

)

Thm. A polynomial p is sdsos

D = Zoz,,,m +Z m@+’)@, m] (Bfmi—mej)Q,

if and only if p(a:') — > (:U)QZ(ZC)
O sdd
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Optimization over r-dsos and r-dsos polynomials

e Can be done by | P and SOCP respectively!

e Commercial solvers such as CPLEX and GUROBI are very mature
(very fast, deal with numerical issues)

e |SOS: add-on to SPOTless (package by Megretski, Tobenkin, Permenter —MIT)

https://github.com/spot-toolbox/spotless

How well does it do?!

We show encouraging experiments from:

Control, polynomial optimization, statistics, copositive
programming, cominatorial optimization, options pricing,
sparse PCA, etc.

e And we’ll give Positivstellensatz results (converse results)

PRINCETON ~ ms 19
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First observation: r-dsos can outperform sos

409 4 9 4 2 2 9 9
p(xy, 9, x3) = 2705+ Toxs + Tox] — 3x]T505

psd but not sos!

...but it’s 1-dsos.
(certificate of nonnegativity using LP)

(.-l PRINCETON -
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A parametric family of polynomials

4 4 22 3
p(x) = 2z] + cx, + axix; + bxjxs

Compactify: o ‘_
plx) =227+ (8 — a — b)ay + axixs + brix,

6

Bl POS=50S=SDS0S
4r Bl >Dsos -
[ ]DS0S=1DS0S
2 - 1
0F |
b
2k _
_4 - —
- |
- |
A0+ -
A2+ -
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Maximum Clique

Can be reformulated (via Motzkin-
Straus) as a copositive program
— positivity of a quartic

Polynomial optimization problem in
12 variables

Upper bound on max cligue:
PP d “Polya-based LP”

e dsos: 6.0000 e Level 0: oo

e sdsos: 6.0000

e 1-dsos: 4.3333 e Level 1: o©

e 1-sdsos: 4.3333

e 2-dsos: 3.8049 e Level 2: 6.0000
e 2-sdsos: 3.6964

3 9362 e r-dsos LP guaranteed to give
. :
ey rcrios o exact value for r=(max clique)*2 ,,

HE
UNIVERSITY mm.




Minimizing a form on the sphere
min p(aj) e degree=4; all coefficients e PC:3.4GHz

resSn—l1 present — generated randomly 16 Gb RAM
n=10 Lower Run n=15 Lower Run n=20 Lower Run
bound time bound time bound time
(secs) (secs) (secs)

SOS (sedumi) -1.920 1.01 sos (sedumi) -3.263 165.3 sos (sedumi) -3.579 5749
soOS (mosek) -1.920 0.184 sos (mosek) -3.263 5.537 sos (mosek) -3.579 79.06

sdsos -5.046 0.152 sdsos -10.433 0.444 sdsos -17.333 1.935
dsos -5.312 0.067 dsos -10.957 0.370 dsos -18.015 1.301
BARON -175.4 0.35 BARON -1079.9 0.62 BARON -5287.9 3.69
n=30 Lower Run n=40 Lower Run n=50 Lower Run
bound time bound time bound time
(secs) (secs) (secs)
SOS (sedumi) --------- =2 SOS (sedumi) --------- = SOS (sedumi) --------- =
SOS (mosek)  --------- = SOS (mosek)  --------- = SOS (mosek)  --------- =
sdsos -36.038 9.431 sdsos -61.248 53.95 sdsos -93.22 100.5
dsos -36.850 8.256 dsos -62.2954 26.02 dsos -94.25 72.79

' BARON -28546.1



300 points .
in R4

T

Observation: e |

SOS (mosek)
sdsos
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Convex regression

+ noise
Max Run
Error time

(secs)
21.282 ~1
33.918 ~1
35.108 ~1

Best convex polynomial fit of degree d

(sd)sos constraint in 40 variables:

yl H(z)y (sd)sos

SOS (mosek)
sdsos

dsos

Run
time
(secs)

(o o]
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Stabilizing the i
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rted N-link pendulum (2N states)

[ B

=

T T T T T Y] o
6, iracwral

s oo oM ood oo
I

(a) 6‘1-5.'1 subspace.

" ! L 1 1
E TR T T T ]

L " L L L |
[ [
By (racilaru]

(b) 95-95 subspace.

N=1 -
N=2
https://www.youtube.com/watch?v=FeCwtvrD76l T

Runtime:
2N (# states) 4 6 8 10 12 14 16 18 20 22
DSOS <1 | 044 | 2.04 3.08 9.67 25.1 74.2 200.5 | 492.0 | 823.2
SDSOS <1072 672 1.78 25.9 024 | 189.0 | 42474 | 8469 | 1275.6
S0OS (5eDuMi) | <=1 | 3.97 | 156.9 | 1697.5 | 23676.5 o0 o0 o0 o0 o0
SO05 (MOSEK) | <=1 | 0.84 16.2 149.1 1526.5 o0 o0 o0 o0 o0
ROA volume ratio:

2N (states) 4 6 8 10 12

Paoos]Pons | 038 | 045 [ 0.13 | 0.12 | 0.00

Podooe/Pooe | O.88 | 0.84 | 0.81 | 0.79 | 0.79

(w/ Majumdar, Tedrake) 75



Stabilizing ATLAS

e 30 states 14 control inputs Cubic dynamics

(way beyond reach of SOS techniques)

Stabilizing controller designed by SDSOS Optimization

gl;y;;ggggg e [Majumdar, AAA, Tedrake]
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Converse results 1&2

Thm. Any even positive definite form p is r-dsos for some r.

e Hence proof of positivity can always be found with LP

e Proof follows from a result of Polya (1928) on Hilbert’s 17t
problem

e Even formsinclude, e.g., copositive programming!

‘Thm. Any positive definite bivariate form p is r-sdsos for some r.

e Proof follows from a result of Reznick (1995)

* p.||x]|"'will always become a sum of powers of linear forms for

sufficiently large r.
PRINCETON . 27
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Converse result 3 & Polynomial Optimization

Thm. For any positive definite form p, there exists an integer
r and a polynomial g of degree r such that

g is dsos and pq is dsos.

e SearchforqgisanlLP
e Such a qis a certificate of nonnegativity of p

e Proof follows from a result of Habicht (1940) on Hilbert’s 17t
problem

e Similar to the Lasserre/Parrilo SDP
hierarchies, polynomial optimization can be
solved to global optimality using hierarchies
of LP and SOCP coming from dsos and sdsos.

PRINCETON ==
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Ongoing directions...

Move towards
real-time algebraic optimization

- e.g., barrier certificates
[Prajna, Jadbabaie, Pappas]

(w/ A. Majumdar, MIT)
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Iterative DSOS via
- Column generation

- Cholesky change of basis

/7

0.3

- 1 1 1 1 1 1 ]
n'-40.4 -0.3 0.2 -0.1 1] 0.1 0.2 0.3

(w/ S. Dash, IBM)
29



Main messages...

® |Inner approximations to SOS cone
Move away from SDP towards LP and SOCP

e Orders of magnitude more scalable

— Largest we have solved: degree-4 in 70 variables.

e Many theoretical guarantees still go through!

e This can be used anywhere SOS is used!

Wi BORFE

POS

/N

Want to know more? aaa.princeton.edu
mit.edu/~anirudha/
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