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Optimization over nonnegative polynomials

Ex. Decide if the following polynomial is nonnegative:

Ex.

Basic semialgebraic set:

Ubiquitous in computational mathematics!
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1. Polynomial optimization

Many applications:

Decidable, but intractable 
(includes your favorite NP-complete problem)

Equivalent 
formulation:

Combinatorial optimization

Option pricing with moment information

The optimal power flow (OPF) problem

Sensor network localization

…



2. Infeasibility certificates in discrete optimization
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PARTITION

A YES answer is easily verifiable.

How would you verify a NO answer? 



3. Stability of dynamical systems

Equilibrium populations Spread of epidemicsDynamics of prices Robotics

Control



Lyapunov’s theorem for local stability
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Existence of Lyapunov function

such that
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Global stability

 GAS
Example.

Output of SDP solver:
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How would you prove nonnegativity?

Ex. Decide if the following polynomial is nonnegative:

Not so easy! (In fact, NP-hard for degree ≥ 4)

But what if I told you:

Natural question:
•Is it any easier to test for a sum of squares (SOS) decomposition?

– Yes! Can be reduced to a semidefinite program (SDP)!
– Can be solved to arbitrary accuracy in polynomial time.

•Extends to the “local” case (Positivstellensatz, etc.)
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Local stability – SOS on the Acrobot

[Majumdar, AAA, Tedrake ]
(Best paper award - IEEE Conf. on Robotics and Automation, ’13)

Swing-up:

Balance:

Controller 
designed by SOS

(4-state system)
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Practical limitations of SOS

• Scalability is a pain in the (_|_)

Thm: p(x) of degree 2d is sos if and only if

• The size of the Gram matrix is:

• Polynomial in n for fixed d, but grows quickly

• The semidefinite constraint is expensive

• E.g., local stability analysis of a 20-state cubic vector field is typically 
an SDP with ~1.2M decision variables and ~200k constraints
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Many interesting approaches to tackle this issue…

• Techniques for exploiting structure (e.g., symmetry and sparsity)

• [Gatermann, Parrilo], [Vallentin], [de Klerk, Sotirov], …

• Customized algorithms (e.g., first order or parallel methods)

• [Bertsimas, Freund, Sun], [Nie, Wang], …

• Let’s not work with SOS to begin with…

• Give other sufficient conditions for nonnegativity that are 
perhaps stronger than SOS, but hopefully cheaper

Our approach [AAA, Majumdar]:
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Not totally clear a priori how to do this…

1) All polynomials that are sums of 4th powers of polynomials

2) All polynomials that are sums of 3 squares of polynomials

Both sets are clearly inside the SOS cone

Consider, e.g., the following two sets:

• But linear optimization over either set is intractable!

• So set inclusion doesn’t mean anything in terms of complexity

• We have to work a bit harder…
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dsos and sdsos

Defn. A polynomial p is diagonally-dominant-sum-of-squares
(dsos) if it can be written as:

for some monomials 
and some nonnegative constants

Defn. A polynomial p is scaled-diagonally-dominant-sum-of-
squares (sdsos) if it can be written as:

for some monomials 
and some constants

Obvious:
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r-dsos and r-sdsos

Defn. A polynomial p is r-diagonally-dominant-sum-of-
squares (r-dsos) if 

is dsos.

Defn. A polynomial p is r-scaled-diagonally-dominant-sum-
of-squares (r-sdsos) if

is sdsos.

Easy:
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dd and sdd matrices

Defn. A symmetric matrix A is diagonally dominant (dd) if

Defn*. A symmetric matrix A is scaled diagonally dominant 
(sdd) if there exists a diagonal matrix D>0 s.t.

DAD is dd.

*Thanks to Pablo Parrilo for telling us about sdd matrices.

Greshgorin’s circle theorem
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Optimization over these sets is an SDP, SOCP, LP !!
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Two natural matrix programs: DDP and SDPP

LP:

SDP:

SDDP:

DDP:
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From matrices to polynomials
Thm. A polynomial p is dsos

if and only if

Thm. A polynomial p is sdsos

if and only if
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Optimization over r-dsos and r-dsos polynomials

• Can be done by LP and SOCP respectively!

• Commercial solvers such as CPLEX and GUROBI are very mature 
(very fast, deal with numerical issues)

• iSOS: add-on to SPOTless (package by Megretski, Tobenkin, Permenter –MIT) 

https://github.com/spot-toolbox/spotless

How well does it do?!
• We show encouraging experiments from:

Control, polynomial optimization, statistics, copositive 
programming, cominatorial optimization, options pricing, 
sparse PCA, etc.

• And we’ll give Positivstellensatz results (converse results)
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First observation: r-dsos can outperform sos

psd but not sos!

…but it’s 1-dsos.
(certificate of nonnegativity using LP)
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A parametric family of polynomials

Compactify:
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Maximum Clique

• dsos: 6.0000
• sdsos: 6.0000
• 1-dsos: 4.3333
• 1-sdsos: 4.3333
• 2-dsos: 3.8049
• 2-sdsos: 3.6964
• sos: 3.2362

Can be reformulated (via Motzkin-
Straus) as a copositive program
→ positivity of a quartic

Polynomial optimization problem in 
12 variables

Upper bound on max clique:

• r-dsos LP guaranteed to give 
exact value for r=(max clique)^2 

“Polya-based LP”

• Level 0: ∞

• Level 1: ∞

• Level 2: 6.0000
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Minimizing a form on the sphere
• degree=4; all coefficients 

present – generated randomly

n=10 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -1.920 1.01

sos (mosek) -1.920 0.184

sdsos -5.046 0.152

dsos -5.312 0.067

BARON -175.4 0.35
n=30 Lower 

bound
Run 
time
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -36.038 9.431

dsos -36.850 8.256

BARON -28546.1

n=15 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -3.263 165.3

sos (mosek) -3.263 5.537

sdsos -10.433 0.444

dsos -10.957 0.370

BARON -1079.9 0.62
n=40 Lower 

bound
Run 
time 
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -61.248 53.95

dsos -62.2954 26.02

n=20 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -3.579 5749

sos (mosek) -3.579 79.06

sdsos -17.333 1.935

dsos -18.015 1.301

BARON -5287.9 3.69
n=50 Lower 

bound
Run 
time 
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -93.22 100.5

dsos -94.25 72.79

• PC: 3.4 GHz, 

16 Gb RAM
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Convex regression

Best convex polynomial fit of degree d

d=2 Max
Error

Run 
time 
(secs)

sos (mosek) 21.282 ~1

sdsos 33.918 ~1

dsos 35.108 ~1

d=4 Max
Error

Run 
time 
(secs)

sos (mosek) --------- ∞

sdsos 12.936 231

dsos 14.859 150

(sd)sos constraint in 40 variables:

Observation:
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Stabilizing the inverted N-link pendulum (2N states)

N=1
N=2

N=6

Runtime:

ROA volume ratio:

https://www.youtube.com/watch?v=FeCwtvrD76I

(w/ Majumdar, Tedrake)
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Stabilizing ATLAS

[Majumdar, AAA, Tedrake]

Stabilizing controller designed by SDSOS Optimization

• 30 states        14 control inputs    Cubic dynamics

(way beyond reach of SOS techniques)
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Converse results 1&2

Thm. Any even positive definite form p is r-dsos for some r.

• Hence proof of positivity can always be found with LP

• Proof follows from a result of Polya (1928) on Hilbert’s 17th

problem

• Even forms include, e.g., copositive programming!

Thm. Any positive definite bivariate form p is r-sdsos for some r.

• Proof follows from a result of Reznick (1995)

• p.||x||rwill always become a sum of powers of linear forms for 
sufficiently large r.
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Converse result 3 & Polynomial Optimization

Thm. For any positive definite form p, there exists an integer 
r and a polynomial q of degree r such that

q is dsos and pq is dsos.

• Similar to the Lasserre/Parrilo SDP 
hierarchies, polynomial optimization can be 
solved to global optimality using hierarchies 
of LP and SOCP coming from dsos and sdsos.

• Search for q is an LP

• Such a q is a certificate of nonnegativity of p

• Proof follows from a result of Habicht (1940) on Hilbert’s 17th

problem
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Ongoing directions…

(w/ S. Dash, IBM)(w/ A. Majumdar, MIT)

Iterative DSOS via 
- Column generation

- Cholesky change of basis

Move towards 
real-time algebraic optimization

- e.g., barrier certificates
[Prajna, Jadbabaie, Pappas]
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Main messages…

• Inner approximations to SOS cone 
Move away from SDP towards LP and SOCP

• Orders of magnitude more scalable

– Largest we have solved: degree-4 in 70 variables.

• Many theoretical guarantees still go through!

• This can be used anywhere SOS is used!

Want to know more? aaa.princeton.edu
mit.edu/~anirudha/


