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1) Stability analysis of polynomial ODEs

=Power/limitations of SOS Lyapunov functions

=Joint work with Bachir El Khadir (Princeton)

2) Robust-to-dynamics optimization

"A new class of robust optimization problems

=Joint work with Oktay Gunluk (IBM Research)
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Asymptotic stability

T = f(g;) f R"” — R™ polynomial with
3,01, rational coefficients

Example @1 = —z2+ 21— saies

T9 = 3x1 — T1x9
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Lyapunov’s theorem on asymptotic stability

Existence of a (Lyapunov) function
V(iz) : R" - R
: oV
14 — (Z
(2) = (5=, f(@)
such that

V(ix) >0

V(x) <0
in a neighborhood of the origin, then LAS.

%

(If inequalities hold everywhere, then GAS.)

Such a function is guaranteed to exist! But how to find one?
Very popular since 2000: Use SDP to find Lyapunov functions
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How to prove nonnegativity?

p(z) = x}—6xiTy + 223735 + 6:1:%:1:3 + 9:1:13:2 622073
—14z1 7972 + 43175 + 525 — Txixs + 1675

Nonnegative

li

p(z) = (33% — 3T179 + T173 + 2$§)2 + (z123 — x2x3)2 SOS
+(423 — 73)%.

eExtends to the constrained case!

Well-known fact:
eOptimization over sum of squares (SOS) polynomials is an SDP!
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Sum of squares Lyapunov functions (GAS)

V(x) sos

Vi) >0

—V(x) sos =—V(z) >0 = GAS

t=—-z+(1+2x)y

y=—(1+2x)x.

Using SOSTOOLS we easily find a quartic polynomial:
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V(z,y) = 6x° — 2zy + 8y — 2y + 3z* + 62%y° + 3y™.

Both V(x,y) and (—=V(z,y)) are SOS:

aT

[z 6 =1 00 0 x
Yy -1 800 -1 Y _
Vi(z,y) = | * 0 030 0 x? —V(z,y) =
Ty 0O 006 0 Ty
KA 0 -100 3| |
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The matrices are positive definite; this proves asymptotic stability.




Sum of squares Lyapunov functions (LAS)

[Majumdar, AAA, Tedrake]
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Complexity of deciding asymptotic stability?

r = Ax
»d=1 (linear systems): decidable, and polynomial time

"Iff A is Hurwitz (i.e., eigenvalues of A have negative real part)

="Quadratic Lyapunov functions always exist:

2 (x) =xTPx,V(x) = xT(ATP + PA)x
(P> 0,ATP + PA < 0).

" A polynomial time algorithm is the following:
=Solve ATP + PA = —1I

"Check if P is positive definite
What if deg(f)>17 ...
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Complexity of deciding asymptotic stability?

What if deg(f)>17 ...
=Conjecture of Arnol’d (1976): undecidable (still open)

Existence of polynomial Lyapunov functions, together with a
computable upper bound on the degree would imply
decidability (e.g., by quantifier elimination).

Thm: Deciding (local or global) asymptotic stability of cubic
vector fields is strongly NP-hard.

[AAA]

(In particular, this rules out tests based on polynomially-sized convex
programs.)
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Thm: Deciding asymptotic stability of cubic homogeneous
vector fields is strongly NP-hard.

Homogeneous means: T = f(:[;)

d
F(Ax) = X' f(x)
*All monomialsin f have the same degree

= ocal Asymptotic Stability = Global Asymptotic Stability
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Proof

Thm: Deciding asymptotic stability of cubic homogeneous
vector fields is strongly NP-hard.

Reduction from: ONE-IN-THREE 3SAT
| 0 0 0 | 0 0 0 1
(1 VZoVa3) AN(Z1VaoVaz)A\(T1V 2y V I3)

r1=1,20=1,29=0
(1 VZoVa3) AN (Z1VaoVa3)A(T1V Ty V x3)

Goal: Design a cubic differential equation which is a.s. iff
Emgg'srgg == ONE-IN-THREE 3SAT has no solution



Proof (cont’d)

ONE-IN-THREE

3SAT {.!'1 V ..f_'g vV ,J'_l} A {,T'Q \Y ..'_'3 V .3'5} N\ {.F’l \ Ia \% .f_'::,) A {J'l V Ig V ..T'_l}

oy pa) = Tigai(l— )’
Positivity of T+ (L= )+ 24— 12+ (1 — m9) + (1 — 23) + 25 — 1)?
quartic forms +(1 =) + a3+ (1 —a5) — 1) 4 (21 + 73 + 24 — 1)?

pr(,y) = y'p(5)

Asymptotic stability of ::(x, y)
cubic homogeneous
vector fields £ = —Vpp(2)
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Stability ?==>? Polynomial Lyapunov function (1/4)

r = —x+xy
y = Y
Claim 1: System is GAS. 5
Claim 2: No polynomial Lyapunov
function (of any degree) exists! o
Proof:
‘V(:U,y) = In(1 4 z°) y2‘ 1
' OV ov . _
V(xj' y) T Wx I Oy y 0 200 200 600 800 1000

2 2 2 2 2
r 2yt y +(rz—xy)
1+4+x2
Wi I [AAA, Krstic, Parrilo, CDC’11] 13




Stability ?==>? Polynomial Lyapunov function (2/4)

r = —I+xy
y = Y
Claim 2: No polynomial Lyapunov of
function (of any degree) exists!
Proof: z(t) = x(0)elv(®-u(0e—
y(t) = y(0)e "
t* = In(k)
(‘l':? O:k) /\ (Ejﬂ(k_l}r Oi) 200 400 600 800 1000
e No rational Lyapunov function
If"’(e“(k_n.,a) < V(k,ak) either.

_ e But a quadratic Lyapunov
oy s Impossible. function locally. 14

UNIVERSITY = .




Stability ?==>? Polynomial Lyapunov function (3/4)

_(—2y(=2* + 207y 4 ) >, o [ 2x(x* + 227y — )
flz,y) = ( — (=% +y7) 2 (—xt + 22292 + 9

2x(zt + 22%y* — y?)

Claim 1: System is GAS.

Claim 2: No polynomial Lyapunov
function (of any degree) even locally!

Proof: -

74 4 g

W(z,y) =

72 + 2

mmcmN ma [AAA, El Khadir, Systems & Control Letters’18] 15
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f(z,y) = (

Stability ?==>? Polynomial Lyapunov function (4/4)

5 (.4)

—2y(—z* + 2z%y° + y*)

—
) — ") (

f (0 y)
_/v\

2z (z* + 2x%y? — y*)

)

2z (z* + 272%y?% — y?) 2y(—z* + 2z°%9y? + y*)
Claim 2: No polynomial Lyapunov L
function (of any degree) even locally! /—~—w-/
. i l"l '\l :'.':‘ E ‘f ;f’-_‘; -— -__-—.—::: "-'_‘\\I \: ‘: "‘I ','! "u
Proof idea: e =0
— l‘ |' " i 'll |" \ ]" ||'l‘t |,r v ‘,l i' " "' I| ." "l 'y r/ I'l "
Suppose we had one: P = Zk:() Pk s 00iiiii! ;\l i I;N:J:UM \: i
I I.' “' !n ), r" ."I ".' f ll 'ki‘\_-:: ::__)/',‘l"l |'l|‘. ,|"l|‘ I.. .\ \‘ ‘. |||
Y i i j Jlf \_-_—:—‘;—_: ’,' |\ ' ! "' .\
9 <VP1€0 (.CC‘, y)a fO (ZC, y)> S 0 -0.2 ‘, i.' : '\: _,,,,d...__/ 3 '-.;
> <VP/<’«0 (xv y)a fo(xa y)> = (. o4 :\C~ e : = —;_- _ - ”
. . %a <2 o0 02 o8
=>» A polynomial must be constant on the unit "
level set of W(x,y) = (x* + y*) /(x? + y?)
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Algebraic proofs of stability for homogeneous vector fields

Homogeneous means: T = f(x)

d
f(Ar) = Af ()
*All monomials in f have the same degree

= ocal Asymptotic Stability = Global Asymptotic Stability
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A positive result

A homogeneous polynomial vector flcx) = cdf(g;)
field is asymptotically stable iff it admits

a rational Lyapunov function of the type Linear case, d =1

ie. f(x) = Ax
_ (=)
Vie) = St 22 r=0,p(z) = z! Pz

where p is a homogeneous polynomial.

Moreover, both V and —V have

“strict SOS certificates” and hence IV can
be found by SDP.

e Useful also for local asym. stability of non-homogeneous systems.

® s S [AAA, El Khadir, TAC’18] 18
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Nonexistence of degree bounds

e So homogeneous systems always admit
rational Lyapunov functions

e Unlike the linear case though:

The degree of the numerator of a
rational Lyapunov function cannot be
bounded as a function of the dimension
and the degree of the input
(homogeneous) polynomial vector field.

 Nevertheless rational Lyapunov functions may be “arbitrarily
better” than polynomial ones...

® sy S [AAA, El Khadir, TAC’18] 20




Potential merits of rational Lyapunov functions

For any integer M, there exists a homogeneous
polynomial vector field f of degree 5 in 2 variables such
that:

e fadmits a rational Lyapunov function with numerator
degree 4 and denominator degree 2, but

e fdoes not admit a polynomial Lyapunov function of
degree less than M.

The SDP searching for our rational Lyapunov functions is no
more expensive than the SDP searching for a polynomial one!

V(z) = 2

groncrm 5 (2oim1 %)™ (aaa Bl khadin, TAC18] 21




Outline

2) Robust-to-dynamics optimization (RDO)

"A new class of robust optimization problems

=Joint work with Oktay Gunluk (IBM Research)
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RDO (informally)
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At the time of earthquake
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Robust to Dynamics Optimization (RDO)

An RDO is described by two pieces of input:
1) An optimization problem: mm{f(a?) S Q}
£

2) A dynamical system: T4 = g(%k) (discrete time case)

RDO is then the following problem:

min{ f(xo) : 2 € L, k=0,1,2,...}
70

This talk: Optimization Problem Dynamics
IW | Linear |
Quadratic Program Nonlinear
Integer Program Uncertain
Semidefinite Program Time-varying
mmcmN - Polynomial Program, ... Hybrid, ... 24
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R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)
min{c' xo: Az <0, k=0,1,2,... 041 = Gy}
L)
Input data: 4, b,c, G

Alternative form:

min{c'x: Ax < b,AGx < b,AG*x < b,AG>x < b, ...}
X

Feasible set of R-LD-LP: o0
S:= ({z] AG"z <b)
Wit & k=0 2



An example...

Hﬂn{érmg:14xkjEZ%A:::O,l,QV”.;xk+1::(?mk}
ro ]

—1 0 1
0 -1 1 -1 0.6 —0.4
A=19 107 1”62{0]‘L:k8 05]

11 3]

1

0.5

0

0.5

T 0 1 2 3 4

S =Nj_o {AG*x < b} =n%_, {AG*x < b}
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Obvious way to get lower bounds

min{c'x: Ax < b,AGx < b,AG*x < b,AG>x < b, ..|}
X

(outer approximations to the feasible set)

e |sthe feasible set of R-LD-LP always a polyhedron?
e When itis, how large are the number of facets?
e Does the feasible set have a tractable description?

e How to get upper bounds?!
— (WEe’ll see later: from semidefinite programming)

[l PRINCETON mmr 27
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The feasible set of an R-LD-LP

O

S:=(){z € R"| AG"z < b}

k=0
Theorem.

(1) This set is always closed, convex, and invariant.
(2) It is not always polyhedral.

(3) Given A, b, G, and z € Q", it is NP-hard to check whether z € S.

Proof of (2).

(Ax<b) G = ( cos(6) sin(0)

— sin(0) cos(@))’ @ irrational

/B

Y Ny
(B
/ N\
zKﬂ '\
g A
N \
LN /4 P
X .,/\q‘\ :; o nq/r
» AN

LS ¥4
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Finite convergence of outer approximations

S = ﬂ{x c R" AGF < b} Sy :i= ﬂ{a: e R"| AGEz < b}
k=0 k=0

SC...8.1CS8.C...CSCS CSy=P

Lemma. If S, = §,.,1,then §,. = S§.
(Poly-time checkable condition for fixed r.)

Proposition. There are three barriers to finite convergence:
(1) Having p(G) > 1.

(2) Having the origin on the boundary of P.

(3) Having an unbounded polyhedron P.

PRINCETON = 29
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Barriers to finite convergence

(1) p(G) = 1.

(2) The origin on the boundary of P. G = [

2

1

190

1

(3) P unIggounded.

S0

I
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a9
14+
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1/3 —1/6 B 1
~1/6 1/3 } p(G) = 9
x9 5, o .
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Computing time to convergence

Theorem: If p(G) < 1, P = {Ax < b} is bounded and
contains the origin in its interior, then

(1) S = S, for an integer r that can be computed in time
poly(a(A, b, G)).

(2) For any fixed p* < 1, all instances of R-LD-LP with
p(G) < p* can be solved in time poly(a(4, b, ¢, G)).

Proof idea.

Invariant ellipsoid:
xTPx < 1}

(.-l PRINCETON -
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Upper bound on the number of iterations

e F'ind an invariant ellipsoid defined by a positive definite matrix F
e Find a shrinkage factor v € (0, 1); i.e., a scalar satisfying G' PG < P
e Iind a scalar ao > 0 such that

{Az < b} C {z! Pz < as}

e Find a scalar vy > 0 such that

{21 Pr <o} C{Az <b}

o Let o

log as
log v

r=| 1

(.-l PRINCETON —
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Finding an invariant ellipsoid

e Computation of P.

To find an invariant ellipsoid for G, we solve the linear system

G'PG—P=—1I.

where [ is the n x n identity matrix. This is called the Lyapunov equation.

The matrix P will automatically turn out to be positive definite.

(.-l PRINCETON '
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Finding the shrinkage factor

o Computation of ~.
v=1 1
maX@-{P@'@' + Zj;éi |P’&J’}

Proof idea.

rPGT PGa !l Py — a2l
vt Pu(1 —1n)

where 7 1s any number such that

IA

nel Pe < ot

Shrinkage is at least 1 — - - P Amaz(P) < 111?-X{Pm: T Z P}
max ! J#Q

(Bound from Gershgorin’s circle theorem) 5,

(.-l PRINCETON -
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Finding the outer ellipsoid

e Computation of as. By solving, e.g., n LPs, we can place our polytope {Ax < b} in a box;
l.e., compute 2n scalars [;, u; such that

We then bound x! Pz = i Pijrizy term by term to get ao:
v = Z InaX{Pg_ﬁj'u_i;u.j, Pi_‘.jl?jlj, Bﬁj'uilj: Piﬁ,jl-i'uj}-
0]
This ensures that {l; < z; < u;} C {z! Pz < as}. Hence, {Axz < b} C {z! Pz < as}.

PRINCETON ~ms 35
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Finding the inner ellipsoid

e Computation of ay. Fori =1....,m, we compute a scalar n; by solving the convex program
n; = max{a; = : v’ Px < 1}
ren

where a; is the i-th row of the constraint matrix A. This problem has a closed form solution:

i = —1/ Q;P_la.i.

Note that P! exists since P = 0. We then let

b2
a1 = min{—5}.
I

PRINCETON ==~ 36
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Recap
R-LD-LP:
mln{c X: Ax<bAGx<bAsz<bAG3x<b )

ﬂ{az e R"| AGFz < b}

k=0
Outer approximations: .
(gives lower bounds on Sy 1= ﬂ {r € R"| AG*z < b}
the optimal value) k=0

SC...8.1CS. C...CSCS CSy=P

What about upper bounds? Need inner approximations!

PRINCETON = 37
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Upper bounds on R-LD-LP via SDP

e Goal: Find the best invariant ellipsoid inside the original
polytope and optimize over that. I

min - ol
1P

P bo

(,fPG\{P

X Pagl

W%, T Pegl = Azsb)

Non-convex formulation
(even after the application of the S-lemma)

PRINCETON m=: 38
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Upper bounds on R-LD-LP via SDP

* |If we parameterize in terms of P~ linstead, then it becomes
convex!

(.-l PRINCETON -
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An improving sequence of SDPs

e Goal: Find the best point that lands in an invariant set.

min - ot
1P

P bo

(,TPGW{P

X Pagl

W%, T Pegl = Azsb)

(.-l PRINCETON '
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An example

(1 0)

1.5 0 !
B ' |1 B 4 [ cos(f) sin(h), o
A= 8 _11 b=, ] = (051), G= - (—sin(@) cos(é’)) where 0 = c
\ 1o 1
(|
0.8
06
0.4
0.2
x' 0
-0.2
0.4
-0.6
-0.8
-1r . . . . . . . . . . . . . . . . . .
08 06 04 02 0 0.2 0.4 0.6 0.8 1 08 06 -04 D2 0 0.2 0.4 0.6 0.8 1

Thm. The SDP upper bound monotonically improves and gives the
exact optimal value of R-LD-LP in r* steps, where r* is polynomially

computable.
PRINCETON ma { 41
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r=0

r=1

PRINCETON —H
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Another interpretation

1h
0.8 r
06 r
0.4 r
0.2
<ot
-02r
0.4}
-0.6 -
-0.8 -
Ak ‘ ‘ . . ‘ ‘ ‘ . ‘
08 06 -04 02 0 0.2 0.4 0.6 0.8 1
X
T e T
08 CLED 08t
0.6 0.6
04 04
02r 02r
$0F $$To0r
0.2 0.2
0.4 F -0.4
-0.6 -0.6 -
-0.8 - -0.8
-1 r ‘ ‘ | ‘ ‘ ‘ | ‘ ) 1 ‘ ‘ |
08 06 -04 02 0 0.2 0.4 0.6 0.8 1 08 06 -04 02

ORFE
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Uncertain & time-varying
linear systems

. 1]
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R-ULD-LP
Robust to uncertain linear dynamics linear programming (R-ULD-LP)
G

Tpr1 € conv{Gy,...,Gs}xy "

G

Models uncertainty and variations with time in the dynamics

min{c’x: AGx < b,VG € G*}
X

G™: set of all finite products of G, ..., G

- Jrscll Input data: 4, b, ¢, Gy, ..., Gs “




Finite convergence of outer approximations

S = m{:r: e R"| AGx < b,VG € G*} |S, = ﬂ{x e R"| AGx < b,VG € g““}
k=0 k=0

SC...8.1CS.C...CSCS CSy=P

1
p(Glr e GS) — 111_{130 maXO‘E{l,...,S}m ”Go-l Go-k | |k

Theorem. If p(G4, ...,G;) < 1,and P = {Ax < b} is bounded and
contains the origin in its interior, then S = §,., for some 7.

(However, number of facets of S is typically very large.)

PRINCETON = 45
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What about inner approximations?

Invariant ellipsoid may not exist even when JSR<1

Wi BORFE

O—
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Idea: search for intersection of ellipsoids instead!

Guaranteed to exist!

minimize CT'JJ

reR™ Q1 e5M%"

s.t. Q1= 0,020
G1Q1G] = Q)
G2Q1Gy = Qs
G1Q2G] < Q
G2Q2G5 < Qo

e The convexification

. e, Gr ~ .
tricks go through! (éxl)T | =0, VG €¢G
e Finite convergence of 0 . )
upper bounds is (Gr)T 1 =0, VG eg
guaranteed. T Ora; < 1
ﬂ;QZQ'i <1

AGr <1, VG eGF k=0.....r—1

- P
L1
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A numerical example of an R-ULD-LP

(o) 0
I e H S R E e U )
Vo)
(a) 7 =0 (b) r=1 (c) r=2
r =20 r=1 r=2

Lower bounds | -1.3333 | -0.9444 | -0.8889
Upper bounds | -0.7395 | -0.8029 | -0.8669

QY PRINCETON - 22~y 1y £ 48
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A broader agenda

Optimization problems with dynamical systems (DS) constraints

-t E=90) |

. . . " PP adlP. _-f(x)
minimize  f(x) ey L NS
subject to = € Q2N Qpg.

H i) ‘ |

21
Optimization Problem “f. ()’ | Type of Dynamical System *“¢” | DS Constraint “{pg”
Linear program® Linear* Invariance®
Convex quadratic program™ Linear and uncertain/stochastic Inclusion in region of attraction
Semidefinite program Linear and time-varying* Collision avoidance
Robust linear program Nonlinear (polynomial) Reachability
Polynomial program Nonlinear and time-varying Orbital stability
Integer program Discrete/continuous /hybrid of both | Stochastic stability

49

Want to

know more?




