Two Problems at the Interface of Optimization and Dynamical Systems

Amir Ali Ahmadi
Princeton, ORFE
(Affiliated member of PACM, COS, MAE, CSML)

MIT, LIDS November 2018

Outline

"Optimization ----> Dynamical systems"

1) Stability analysis of polynomial ODEs

- Power/limitations of SOS Lyapunov functions
 - Joint work with Bachir El Khadir (Princeton)

"Dynamical systems ----> Optimization"

2) Robust-to-dynamics optimization

- A new class of robust optimization problems
 - Joint work with Oktay Gunluk (IBM Research)

Asymptotic stability

$$\dot{x} = f(x)$$

$$\dot{x} = f(x) \quad f: \mathbb{R}^n \to \mathbb{R}^n$$

polynomial with rational coefficients

$$f(0) = 0$$

$$\dot{x}_2 = 3x_1 - x_1 x_2$$

Locally Asymp. Stable (LAS) if

Globally Asymp. Stable (GAS) if

$$\forall \epsilon > 0$$
, $\exists \delta > 0$, s.t.
 $x(0) \in B_{\delta} \Rightarrow x(t) \in B_{\epsilon} \forall t$

- Stability of equilibrium prices in economics
- Convergence analysis of algorithms, ...

Lyapunov's theorem on asymptotic stability

$$\dot{x} = f(x)$$

$$V(x): \mathbb{R}^n \to \mathbb{R}$$

$$\dot{V}(x) = \langle \frac{\partial V}{\partial x}, f(x) \rangle$$

such that

$$\dot{V}(x) < 0$$

in a neighborhood of the origin, then LAS.

(If inequalities hold everywhere, then GAS.)

Such a function is guaranteed to exist! But how to find one?

Very popular since 2000: Use SDP to find polynomial Lyapunov functions.

How to prove nonnegativity?

$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_3^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3 - 14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$$

Nonnegative

$$p(x) = (x_1^2 - 3x_1x_2 + x_1x_3 + 2x_3^2)^2 + (x_1x_3 - x_2x_3)^2 SOS + (4x_2^2 - x_3^2)^2.$$

•Extends to the constrained case!

Well-known fact:

Optimization over sum of squares (SOS) polynomials is an SDP!

Sum of squares Lyapunov functions (GAS)

$$\begin{array}{ccc} V(x) & \cos & V(x) > 0 \\ -\dot{V}(x) & \cos & \Rightarrow -\dot{V}(x) > 0 \end{array} \Rightarrow \mathsf{GAS}$$

(stolen from Pablo's homepage)

(M. Krstić) Find a Lyapunov function for *global asymptotic stability*:

$$\dot{x} = -x + (1+x) y$$
$$\dot{y} = -(1+x) x.$$

Using SOSTOOLS we easily find a quartic polynomial:

$$V(x,y) = 6x^2 - 2xy + 8y^2 - 2y^3 + 3x^4 + 6x^2y^2 + 3y^4.$$

Both V(x,y) and $(-\dot{V}(x,y))$ are SOS:

$$V(x,y) = \begin{bmatrix} x \\ y \\ x^2 \\ xy \\ y^2 \end{bmatrix}^T \begin{bmatrix} 6 & -1 & 0 & 0 & 0 \\ -1 & 8 & 0 & 0 & -1 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 \\ 0 & -1 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ x^2 \\ xy \\ y^2 \end{bmatrix}, \quad -\dot{V}(x,y) = \begin{bmatrix} x \\ y \\ x^2 \\ xy \end{bmatrix}^T \begin{bmatrix} 10 & 1 & -1 & 1 \\ 1 & 2 & 1 & -2 \\ -1 & 1 & 12 & 0 \\ 1 & -2 & 0 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ x^2 \\ xy \end{bmatrix}$$

The matrices are positive *definite*; this *proves* asymptotic stability.

Sum of squares Lyapunov functions (LAS)

[Majumdar, AAA, Tedrake]

Complexity of deciding asymptotic stability?

$$\dot{x} = Ax$$

- d=1 (linear systems): decidable, and polynomial time
 - ■Iff A is Hurwitz (i.e., eigenvalues of A have negative real part)
 - •Quadratic Lyapunov functions always exist:

$$V(x) = x^T P x, \dot{V}(x) = x^T (A^T P + P A) x$$
$$(P > 0, A^T P + P A < 0).$$

- A polynomial time algorithm is the following:
 - ■Solve $A^TP + PA = -I$
 - ■Check if P is positive definite

Complexity of deciding asymptotic stability?

What if deg(f)>1?...

Conjecture of Arnol'd (1976): undecidable (still open)

Existence of **polynomial Lyapunov functions**, together with a **computable upper bound** on the degree would imply decidability (e.g., by quantifier elimination).

Thm: Deciding (local or global) asymptotic stability of cubic vector fields is strongly NP-hard.

[AAA]

(In particular, this rules out tests based on polynomially-sized convex programs.)

Thm: Deciding asymptotic stability of cubic *homogeneous* vector fields is strongly NP-hard.

Homogeneous means:

$$\dot{x} = f(x)$$
$$f(\lambda x) = \lambda^d f(x)$$

- \blacksquare All monomials in f have the same degree
- Local Asymptotic Stability = Global Asymptotic Stability

Proof

Thm: Deciding asymptotic stability of cubic homogeneous vector fields is strongly NP-hard.

Reduction from: ONE-IN-THREE 3SAT

$$x_1 = 1, x_2 = 1, x_3 = 0$$

$$(x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor x_3)$$

Goal: Design a cubic differential equation which is a.s. iff

Proof (cont'd)

ONE-IN-THREE

 $(x_1 \vee \bar{x}_2 \vee x_4) \wedge (\bar{x}_2 \vee \bar{x}_3 \vee x_5) \wedge (\bar{x}_1 \vee x_3 \vee \bar{x}_5) \wedge (x_1 \vee x_3 \vee x_4)$ 3SAT

quartic forms

Positivity of
$$p(x) = \sum_{i=1}^{5} x_i^2 (1-x_i)^2 + (x_1 + (1-x_2) + x_4 - 1)^2 + ((1-x_2) + (1-x_3) + x_5 - 1)^2 + ((1-x_1) + x_3 + (1-x_5) - 1)^2 + (x_1 + x_3 + x_4 - 1)^2$$

 $p_h(x,y) = y^4 p(\frac{x}{y})$

Asymptotic stability of cubic homogeneous vector fields INCETON FORFE

$$z := (x, y)$$

$$\dot{z} = -\nabla p_h(z)$$

Stability ?==>? Polynomial Lyapunov function (1/4)

$$\dot{x} = -x + xy \\
\dot{y} = -y$$

Claim 1: System is GAS.

Claim 2: No polynomial Lyapunov function (of any degree) exists!

Proof:

$$V(x,y) = \ln(1+x^2) + y^2$$

$$\dot{V}(x,y) = \frac{\partial V}{\partial x}\dot{x} + \frac{\partial V}{\partial y}\dot{y}$$

$$= -\frac{x^2 + 2y^2 + x^2y^2 + (x - xy)^2}{1 + x^2}$$

Stability ?==>? Polynomial Lyapunov function (2/4)

$$\begin{array}{rcl} \dot{x} & = & -x + xy \\ \dot{y} & = & -y \end{array}$$

Claim 2: No polynomial Lyapunov function (of any degree) exists!

Proof:
$$x(t) = x(0)e^{[y(0)-y(0)e^{-t}-t]}$$
 $y(t) = y(0)e^{-t}$

$$t^* = \ln(k)$$

$$(k, \alpha k) \qquad (e^{\alpha(k-1)}, \alpha)$$

Impossible.

- No rational Lyapunov function either.
- But a quadratic Lyapunov function locally.

Stability ?==>? Polynomial Lyapunov function (3/4)

$$f(x,y) = \begin{pmatrix} -2y(-x^4 + 2x^2y^2 + y^4) \\ 2x(x^4 + 2x^2y^2 - y^4) \end{pmatrix} - (x^2 + y^2) \begin{pmatrix} 2x(x^4 + 2x^2y^2 - y^4) \\ 2y(-x^4 + 2x^2y^2 + y^4) \end{pmatrix}$$

Claim 1: System is GAS.

Claim 2: No polynomial Lyapunov function (of any degree) even locally!

Proof:

$$W(x,y) = \frac{x^4 + y^4}{x^2 + y^2}$$

Stability ?==>? Polynomial Lyapunov function (4/4)

$$f(x,y) = \underbrace{\begin{pmatrix} -2y(-x^4 + 2x^2y^2 + y^4) \\ 2x(x^4 + 2x^2y^2 - y^4) \end{pmatrix}}_{f(x,y)} - \underbrace{\begin{pmatrix} 2x(x^4 + 2x^2y^2 - y^4) \\ 2y(-x^4 + 2x^2y^2 + y^4) \end{pmatrix}}_{f(x,y)}$$

Claim 2: No polynomial Lyapunov function (of any degree) even locally!

Proof idea:

Suppose we had one: $p = \sum_{k=0}^{\infty} p_k$

$$\rightarrow \langle \nabla p_{k_0}(x,y), f_0(x,y) \rangle = 0.$$

A polynomial must be constant on the unit level set of $W(x,y) = (x^4 + y^4)/(x^2 + y^2)$

Algebraic proofs of stability for homogeneous vector fields

Homogeneous means: $\dot{x} = f(x) \\ f(\lambda x) = \lambda^d f(x)$

- \blacksquare All monomials in f have the same degree
- Local Asymptotic Stability = Global Asymptotic Stability

A positive result

Thm. A homogeneous polynomial vector field is asymptotically stable iff it admits a rational Lyapunov function of the type

$$V(x) = \frac{p(x)}{(\sum_{i=1}^{n} x_i^2)^r}$$

where p is a homogeneous polynomial.

Moreover, both V and -V have "strict SOS certificates" and hence V can be found by SDP.

$$f(cx) = c^d f(x)$$

Linear case, $d = 1$
i.e. $f(x) = Ax$
 $r = 0, p(x) = x^T Px$

Useful also for local asym. stability of non-homogeneous systems.

Proof outline

Nonexistence of degree bounds

- So homogeneous systems always admit rational Lyapunov functions
- Unlike the linear case though:

Thm. The degree of the numerator of a rational Lyapunov function cannot be bounded as a function of the dimension and the degree of the input (homogeneous) polynomial vector field.

• Nevertheless rational Lyapunov functions may be "arbitrarily better" than polynomial ones...

Potential merits of rational Lyapunov functions

Thm. For any integer *M*, there exists a homogeneous polynomial vector field *f* of degree 5 in 2 variables such that:

- f admits a rational Lyapunov function with numerator degree 4 and denominator degree 2, but
- f does not admit a polynomial Lyapunov function of degree less than M.

The SDP searching for our rational Lyapunov functions is no more expensive than the SDP searching for a polynomial one!

Outline

"Optimization ----> Control"

1) Stability analysis of polynomial ODEs

Power/limitations of SOS Lyapunov functions

Joint work with Bachir El Khadir (Princeton)

"Control ----> Optimization"

2) Robust-to-dynamics optimization (RDO)

- A new class of robust optimization problems
 - Joint work with Oktay Gunluk (IBM Research)

RDO (informally)

- You solve a constrained optimization problem at time zero
- An external dynamical system may move your optimal point in the future and make it infeasible
- You want your initial decision to be "safe enough" to not let this happen

Population control

Learning a dynamical system

Projection-free descent

Drug design

Earthquake-resistant structures

Robust to Dynamics Optimization (RDO)

An RDO is described by two pieces of input:

1) An optimization problem:
$$\min_x \{f(x) : x \in \Omega\}$$

2) A dynamical system: $x_{k+1} = g(x_k)$ (discrete time case)

RDO is then the following problem:

$$\min_{x_0} \{ f(x_0) : x_k \in \Omega, k = 0, 1, 2, \ldots \}$$

This talk:

Optimization Problem	Dynamics
Linear Program	Linear
Quadratic Program	Nonlinear
Integer Program	Uncertain
Semidefinite Program	Time-varying
Polynomial Program,	Hybrid,

R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

Input data: A, b, c, G

Alternative form:

$$\min_{x} \{ c^T x : Ax \le b, AGx \le b, AG^2 x \le b, AG^3 x \le b, ... \}$$

(An infinite LP)

$$\mathcal{S} := \bigcap \{ x | AG^k x \le b \}$$

An example...

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 3 \end{bmatrix}, c = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, G = \begin{bmatrix} 0.6 & -0.4 \\ 0.8 & 0.5 \end{bmatrix}$$

$$S = \bigcap_{k=0}^{\infty} \{AG^k x \le b\} = \bigcap_{k=0}^{2} \{AG^k x \le b\}$$

Obvious way to get lower bounds

$$\min_{x} \{ c^{T} x : Ax \le b, AGx \le b, AG^{2} x \le b, AG^{3} x \le b, ... \}$$

Truncate!

(outer approximations to the feasible set)

Natural questions:

- Is the feasible set of R-LD-LP always a polyhedron?
- When it is, how large are the number of facets?
- Does the feasible set have a tractable description?
- How to get upper bounds?!
 - (We'll see later: from semidefinite programming)

The feasible set of an R-LD-LP

$$\mathcal{S} := \bigcap_{k=0}^{\infty} \{ x \in \mathbb{R}^n | AG^k x \le b \}$$

Theorem.

- (1) This set is always closed, convex, and invariant.
- (2) It is not always polyhedral.
- (3) Given A, b, G, and $z \in \mathbb{Q}^n$, it is NP-hard to check whether $z \in S$.

Proof of (2).

$$\{Ax \le b\}$$
 $G = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$, θ irrational

Finite convergence of outer approximations

$$\mathcal{S} := \bigcap_{k=0}^{\infty} \{ x \in \mathbb{R}^n | AG^k x \le b \}$$

$$S := \bigcap_{k=0}^{\infty} \{ x \in \mathbb{R}^n | AG^k x \le b \} \quad S_r := \bigcap_{k=0}^r \{ x \in \mathbb{R}^n | AG^k x \le b \}$$

$$S \subseteq \ldots S_{r+1} \subseteq S_r \subseteq \ldots \subseteq S_2 \subseteq S_1 \subseteq S_0 = P$$
.

Lemma. If $S_r = S_{r+1}$, then $S_r = S$. (Poly-time checkable condition for fixed r.)

Proposition. There are three barriers to finite convergence:

- (1) Having $\rho(G) \geq 1$.
- (2) Having the origin on the boundary of P.
- (3) Having an unbounded polyhedron P.

Barriers to finite convergence

(1)
$$\rho(G) \ge 1$$
.

$$G = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$$

(2) The origin on the boundary of P.

$$x_2$$
 1
 S_1
 X_1
 X_1

(3) P unbounded.

Computing time to convergence

Theorem: If $\rho(G) < 1$, $P = \{Ax \le b\}$ is bounded and contains the origin in its interior, then

- (1) $S = S_r$ for an integer r that can be computed in time $poly(\sigma(A, b, G))$.
- (2) For any fixed $\rho^* < 1$, all instances of R-LD-LP with $\rho(G) \le \rho^*$ can be solved in time $poly(\sigma(A, b, c, G))$.

Proof idea.

Invariant ellipsoid:

$$\{x^T P x \le 1\}$$

Upper bound on the number of iterations

- Find an invariant ellipsoid defined by a positive definite matrix P
- Find a shrinkage factor $\gamma \in (0,1)$; i.e., a scalar satisfying $G^TPG \preceq \gamma P$
- Find a scalar $\alpha_2 > 0$ such that

$${Ax \le b} \subseteq {x^T Px \le \alpha_2}$$

• Find a scalar $\alpha_1 > 0$ such that

$$\{x^T P x \le \alpha_1\} \subseteq \{Ax \le b\}$$

• Let

$$r = \lceil \frac{\log \frac{\alpha_1}{\alpha_2}}{\log \gamma} \rceil$$

Finding an invariant ellipsoid

• Computation of P.

To find an invariant ellipsoid for G, we solve the linear system

$$G^T P G - P = -I.$$

where I is the $n \times n$ identity matrix. This is called the Lyapunov equation.

The matrix P will automatically turn out to be positive definite.

Finding the shrinkage factor

• Computation of γ .

$$\gamma = 1 - \frac{1}{\max_{i} \{ P_{ii} + \sum_{j \neq i} |P_{i,j}| \}}.$$

Proof idea.

$$x^T G^T P G x = x^T P x - x^T x$$

$$\leq x^T P x (1 - \eta)$$

where η is any number such that

$$\eta x^T P x \leq x^T x$$

Shrinkage is at least
$$1 - \frac{1}{\lambda_{max}(P)}$$

$$\lambda_{max}(P) \le \max_{i} \{ P_{ii} + \sum_{j \ne i} |P_{i,j}| \}.$$

(Bound from Gershgorin's circle theorem)

Finding the outer ellipsoid

• Computation of α_2 . By solving, e.g., n LPs, we can place our polytope $\{Ax \leq b\}$ in a box; i.e., compute 2n scalars l_i, u_i such that

$${Ax \le b} \subseteq {l_i \le x_i \le u_i}.$$

We then bound $x^T P x = \sum_{i,j} P_{i,j} x_i x_j$ term by term to get α_2 :

$$\alpha_2 = \sum_{i,j} \max\{P_{i,j}u_iu_j, P_{i,j}l_il_j, P_{i,j}u_il_j, P_{i,j}l_iu_j\}.$$

This ensures that $\{l_i \leq x_i \leq u_i\} \subseteq \{x^T P x \leq \alpha_2\}$. Hence, $\{Ax \leq b\} \subseteq \{x^T P x \leq \alpha_2\}$.

Finding the inner ellipsoid

• Computation of α_1 . For i = 1, ..., m, we compute a scalar η_i by solving the convex program

$$\eta_i := \max_{x \in n} \{ a_i^T x : x^T P x \le 1 \}$$

where a_i is the *i*-th row of the constraint matrix A. This problem has a closed form solution:

$$\eta_i = -\sqrt{a_i^T P^{-1} a_i}.$$

Note that P^{-1} exists since $P \succ 0$. We then let

$$\alpha_1 = \min_i \{ \frac{b_i^2}{\eta_i^2} \}.$$

Recap

R-LD-LP:

$$\min_{x} \{ c^T x : Ax \le b, AGx \le b, AG^2 x \le b, AG^3 x \le b, ... \}$$

$$\mathcal{S} := \bigcap_{k=0}^{\infty} \{ x \in \mathbb{R}^n | AG^k x \le b \}$$

Outer approximations:

(gives lower bounds on the optimal value)

$$S_r := \bigcap_{k=0}^r \{ x \in \mathbb{R}^n | AG^k x \le b \}$$

$$S \subseteq \ldots S_{r+1} \subseteq S_r \subseteq \ldots \subseteq S_2 \subseteq S_1 \subseteq S_0 = P$$
.

What about upper bounds? Need inner approximations!

Upper bounds on R-LD-LP via SDP

 Goal: Find the best invariant ellipsoid inside the original polytope and optimize over that.

$$[\forall z, z^T Pz \leqslant 1 \Rightarrow Az \leqslant 6]$$

Non-convex formulation (even after the application of the S-lemma)

Upper bounds on R-LD-LP via SDP

• If we parameterize in terms of P^{-1} instead, then it becomes convex!

An improving sequence of SDPs

Goal: Find the best point that lands in an invariant set.

min
$$C^T \chi$$
 χ, P
 $P \neq 0$
 $G^T P G \neq P$
 $\chi^T P \chi \leq 1$
 $Y \neq 1 \Rightarrow A \neq 1 \leq b$

An example

$$A = \begin{pmatrix} 1 & 0 \\ -1.5 & 0 \\ 0 & 1 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad c = -(0.5 \ 1), \quad G = \frac{4}{5} \begin{pmatrix} \cos(\theta) & \sin(\theta), \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \text{ where } \theta = \frac{\pi}{6}.$$

Thm. The SDP upper bound monotonically improves and gives the exact optimal value of R-LD-LP in r^* steps, where r^* is polynomially computable.

Another interpretation

LP

+

Uncertain & time-varying linear systems

R-ULD-LP

Robust to uncertain linear dynamics linear programming (R-ULD-LP)

$$x_{k+1} \in conv\{G_1, \dots, G_s\}x_k$$

Models uncertainty and variations with time in the dynamics

$$\min_{x} \{ c^T x : AGx \le b, \forall G \in \mathbb{G}^* \} \quad \text{(An infinite LP)}$$

 \mathbb{G}^* : set of all finite products of G_1, \dots, G_s

Finite convergence of outer approximations

$$\mathcal{S} := \bigcap_{k=0}^{\infty} \{ x \in \mathbb{R}^n | AGx \le b, \forall G \in \mathcal{G}^* \} \quad S_r := \bigcap_{k=0}^r \{ x \in \mathbb{R}^n | AGx \le b, \forall G \in \mathcal{G}^k \}$$

$$S_r := \bigcap_{k=0}^r \{ x \in \mathbb{R}^n | AGx \le b, \forall G \in \mathcal{G}^k \}$$

$$S \subseteq \ldots S_{r+1} \subseteq S_r \subseteq \ldots \subseteq S_2 \subseteq S_1 \subseteq S_0 = P$$
.

Joint spectral radius (JSR):

$$\rho(G_1, \dots, G_S) = \lim_{k \to \infty} \max_{\sigma \in \{1, \dots, S\}^m} ||G_{\sigma_1} \cdots G_{\sigma_k}||^{\frac{1}{k}}$$

Theorem. If $\rho(G_1, ..., G_s) < 1$, and $P = \{Ax \leq b\}$ is bounded and contains the origin in its interior, then $S = S_r$, for some r.

(However, number of facets of S is typically very large.)

What about inner approximations?

Idea: search for intersection of ellipsoids instead!

Guaranteed to exist!

- The convexification tricks go through!
- Finite convergence of upper bounds is guaranteed.

$$c^T x$$

s.t.
$$Q_1 \succ 0, Q_2 \succ 0$$

 $G_1 Q_1 G_1^T \preceq Q_1$
 $G_2 Q_1 G_2^T \preceq Q_2$
 $G_1 Q_2 G_1^T \preceq Q_1$

$$G_2Q_2G_2^T \preceq Q_2$$

$$\begin{bmatrix} Q_1 & \tilde{G}x \\ (\tilde{G}x)^T & 1 \end{bmatrix} \succeq 0, \ \forall \tilde{G} \in \mathcal{G}^r$$

$$\begin{bmatrix} Q_2 & \tilde{G}x \\ (\tilde{G}x)^T & 1 \end{bmatrix} \succeq 0, \ \forall \tilde{G} \in \mathcal{G}^r$$

$$a_i^T Q_1 a_i \leq 1$$

$$a_i^T Q_2 a_i \le 1$$

$$A\tilde{G}x < 1, \ \forall \tilde{G} \in \mathcal{G}^k, k = 0, \dots, r-1$$

A numerical example of an R-ULD-LP

$$A = \begin{pmatrix} 1 & 0 \\ -1.5 & 0 \\ 0 & 1 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, c = \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}, G_1 = \begin{pmatrix} -1/4 - 1/4 \\ -1 & 0 \end{pmatrix}, \text{ and } G_2 = \begin{pmatrix} 3/4 & 3/4 \\ -1/2 & 1/4 \end{pmatrix}.$$

	r = 0	r = 1	r=2
Lower bounds	-1.3333	-0.9444	-0.8889
Upper bounds	-0.7395	-0.8029	-0.8669

A broader agenda

Optimization problems with dynamical systems (DS) constraints

minimize f(x)subject to $x \in \Omega \cap \Omega_{DS}$.

Optimization Problem " f, Ω "	Type of Dynamical System "g"	DS Constraint " Ω_{DS} "	
Linear program*	Linear*	Invariance*	
Convex quadratic program*	Linear and uncertain/stochastic	Inclusion in region of attraction	
Semidefinite program	Linear and time-varying*	Collision avoidance	
Robust linear program	Nonlinear (polynomial)	Reachability	
Polynomial program	Nonlinear and time-varying	Orbital stability	
Integer program	Discrete/continuous/hybrid of both	Stochastic stability	
:	:	:	

Want to know more? http://aaa.princeton.edu