
1

Amir Ali Ahmadi
Princeton, ORFE

(Affiliated member of PACM, COS, MAE, CSML)

MIT, LIDS
November 2018

Two Problems at the Interface of 
Optimization and Dynamical Systems



2

Outline

1) Stability analysis of polynomial ODEs

“Dynamical systems ----> Optimization”

“Optimization ----> Dynamical systems”

2) Robust-to-dynamics optimization

Power/limitations of SOS Lyapunov functions

Joint work with Bachir El Khadir (Princeton)

A new class of robust optimization problems

Joint work with Oktay Gunluk (IBM Research)



Asymptotic stability

Example

Locally Asymp. Stable (LAS) if Globally Asymp. Stable (GAS) if

polynomial with 
rational coefficients

• Stability of 
equilibrium 
prices in 
economics

• Convergence 
analysis of 
algorithms, …



Lyapunov’s theorem on asymptotic stability

4

Existence of a (Lyapunov) function

such that

Such a function is guaranteed to exist! But how to find one?

Very popular since 2000: Use SDP to find polynomial Lyapunov functions.

𝑉 𝑥 > 0
 𝑉 𝑥 < 0

in a neighborhood of the origin, then LAS.

(If inequalities hold everywhere, then GAS.)
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How to prove nonnegativity?

Nonnegative

SOS

•Extends to the constrained case!

Well-known fact:
•Optimization over sum of squares (SOS) polynomials is an SDP!
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Sum of squares Lyapunov functions (GAS)

(stolen from Pablo’s homepage)

 GAS
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Sum of squares Lyapunov functions (LAS)

[Majumdar, AAA, Tedrake]



Complexity of deciding asymptotic stability? 

What if deg(f)>1? …



9

Complexity of deciding asymptotic stability? 

Thm: Deciding (local or global) asymptotic stability of cubic 
vector fields is strongly NP-hard.

[AAA]

(In particular, this rules out tests based on polynomially-sized convex 
programs.)

Conjecture of Arnol’d (1976): undecidable  (still open)

Existence of polynomial Lyapunov functions, together with a 
computable upper bound on the degree would imply 
decidability (e.g., by quantifier elimination).

What if deg(f)>1? …



Thm: Deciding asymptotic stability of cubic homogeneous 
vector fields is strongly NP-hard.

All monomials in      have the same degree

Local Asymptotic Stability = Global Asymptotic Stability

Homogeneous means:



Proof

ONE-IN-THREE 3SAT

Thm: Deciding asymptotic stability of cubic homogeneous 
vector fields is strongly NP-hard.

Reduction from: 

Goal: Design a cubic differential equation which is a.s. iff
ONE-IN-THREE 3SAT has no solution
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Proof (cont’d)

ONE-IN-THREE 
3SAT

Positivity of 
quartic forms

Asymptotic stability of
cubic homogeneous 

vector fields



Proof:
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Stability ?==>? Polynomial Lyapunov function (1/4)

System is GAS.Claim 1:

Claim 2: No polynomial Lyapunov 
function (of any degree) exists!

[AAA, Krstic, Parrilo, CDC’11]
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Stability ?==>? Polynomial Lyapunov function (2/4)

Claim 2: No polynomial Lyapunov 
function (of any degree) exists!

Proof:

Impossible.  

• No rational Lyapunov function 
either.

• But a quadratic Lyapunov
function locally.  



Proof:
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Stability ?==>? Polynomial Lyapunov function (3/4)

System is GAS.Claim 1:

Claim 2: No polynomial Lyapunov
function (of any degree) even locally!

[AAA, El Khadir, Systems & Control Letters’18]



Proof idea:
Suppose we had one:
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Stability ?==>? Polynomial Lyapunov function (4/4)

Claim 2: No polynomial Lyapunov
function (of any degree) even locally!





 A polynomial must be constant on the unit 
level set of 𝑊 𝑥, 𝑦 = 𝑥4 + 𝑦4 / 𝑥2 + 𝑦2



Algebraic proofs of stability for homogeneous vector fields

All monomials in      have the same degree

Local Asymptotic Stability = Global Asymptotic Stability

Homogeneous means:



A positive result
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Thm. A homogeneous polynomial vector 
field is asymptotically stable iff it admits 
a rational Lyapunov function of the type

where 𝑝 is a homogeneous polynomial.

Moreover, both 𝑉 and −  𝑉 have
“strict SOS certificates” and hence 𝑉 can 
be found by SDP. 

[AAA, El Khadir, TAC’18]

• Useful also for local asym. stability of non-homogeneous systems.



Proof outline
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Nonexistence of degree bounds
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Thm. The degree of the numerator of a 
rational Lyapunov function cannot be 
bounded as a function of the dimension 
and the degree of the input 
(homogeneous) polynomial vector field.

[AAA, El Khadir, TAC’18]

• So homogeneous systems always admit
rational Lyapunov functions

• Unlike the linear case though:

• Nevertheless rational Lyapunov functions may be “arbitrarily 
better” than polynomial ones…



Potential merits of rational Lyapunov functions
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Thm. For any integer M, there exists a homogeneous 
polynomial vector field f of degree 5 in 2 variables such 
that:

• f admits a rational Lyapunov function with numerator 
degree 4 and denominator degree 2, but

• f does not admit a polynomial Lyapunov function of 
degree less than M.

[AAA, El Khadir, TAC’18]

The SDP searching for our rational Lyapunov functions is no 
more expensive than the SDP searching for a polynomial one!
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Outline

1) Stability analysis of polynomial ODEs

“Control ----> Optimization”

“Optimization ----> Control”

2) Robust-to-dynamics optimization (RDO)

Power/limitations of SOS Lyapunov functions

Joint work with Bachir El Khadir (Princeton)

A new class of robust optimization problems

Joint work with Oktay Gunluk (IBM Research)
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RDO (informally)

- You solve a constrained optimization problem at time zero

- An external dynamical system may move your optimal 
point in the future and make it infeasible

- You want your initial decision to be “safe enough” to not 
let this happen

Drug design

Earthquake-resistant structuresProjection-free descent

Population control

Learning a dynamical system



Optimization Problem Dynamics

Linear Program Linear

Quadratic Program Nonlinear

Integer Program Uncertain

Semidefinite Program Time-varying

Polynomial Program, … Hybrid, … 24

Robust to Dynamics Optimization (RDO)

1) An optimization problem:

An RDO is described by two pieces of input:  

2) A dynamical system:

RDO is then the following problem:  

(discrete time case)

This talk:



25

R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

Feasible set of R-LD-LP:

Alternative form:

(An infinite LP)
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An example…
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Obvious way to get lower bounds

Natural questions:

• Is the feasible set of R-LD-LP always a polyhedron?
• When it is, how large are the number of facets?
• Does the feasible set have a tractable description?

• How to get upper bounds?!
– (We’ll see later: from semidefinite programming) 

Truncate!
(outer approximations to the feasible set)
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The feasible set of an R-LD-LP

Proof of (2). 
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Finite convergence of outer approximations
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Barriers to finite convergence



Computing time to convergence
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Proof idea. 
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Upper bound on the number of iterations
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Finding an invariant ellipsoid
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Finding the shrinkage factor

Proof idea.

(Bound from Gershgorin’s circle theorem)
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Finding the outer ellipsoid
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Finding the inner ellipsoid
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Recap

R-LD-LP:

Outer approximations:

(gives lower bounds on
the optimal value)

What about upper bounds? Need inner approximations!
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Upper bounds on R-LD-LP via SDP

• Goal: Find the best invariant ellipsoid inside the original 
polytope and optimize over that.

Non-convex formulation
(even after the application of the S-lemma)
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Upper bounds on R-LD-LP via SDP
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An improving sequence of SDPs

• Goal: Find the best point that lands in an invariant set.
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An example
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Another interpretation

r=0

r=1
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LP
+
Uncertain & time-varying 
linear systems
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R-ULD-LP

Robust to uncertain linear dynamics linear programming (R-ULD-LP)

Models uncertainty and variations with time in the dynamics

(An infinite LP)
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Finite convergence of outer approximations
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What about inner approximations?

Invariant ellipsoid may not exist even when JSR<1



47

Idea: search for intersection of ellipsoids instead!

• The convexification 
tricks go through!

• Finite convergence of 
upper bounds is 
guaranteed.

Guaranteed to exist!



48

A numerical example of an R-ULD-LP
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A broader agenda

Optimization problems with dynamical systems (DS) constraints

Want to know more? http://aaa.princeton.edu 


