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The Joint Spectral Radius

Given a finite set of                 matrices

Joint spectral radius (JSR):

If only one matrix:

Spectral Radius



Trackability of Graphs

Noisy observations:

  



How does the number of possible 
paths grow with length of 
observation?

N(t): max. number of possible paths over all observations of length t 

Graph is called trackable if N(t) is bounded by a polynomial in t

Graph trackable iff
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JSR and Switched/Uncertain Linear Systems

Joint spectral radius (JSR):

“Uniformly stable” iff

Switched linear dynamics:

Linear dynamics:

“Stable” iff

Spectral radius:
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Stability around an equilibrium point

Controller design for this humanoid presented in:

[Majumdar, AAA, Tedrake, CDC’14 – submitted] Done by SDSOS Optimization
[AAA, Majumdar,’13]
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Computation of JSR

[Blondel, Tsitsiklis]

If only one matrix:

For more than one matrix:

(even for 2 matrices of size 47x47 !!)

Open problem: decidability of testing 

Would become decidable if rational finiteness conjecture is true

Finiteness conjecture: equality achieved at finite k

Lower bounds on JSR:

Upper bounds on JSR: from Lyapunov theory
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This Talk

1. A meta-SDP-algorithm for computing upper bounds

Lyapunov theory + basic automata theory

2. Exact JSR of rank-one matrices
via dynamic programming

3. Uncertain nonlinear systems

SOS-convex Lyapunov functions
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Common Lyapunov function

If we can find a function

such that
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then,

Such a function always exists! But may be extremely difficult to find!!
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Computationally-friendly common Lyapunov functions

If we can find a function

such that

then,

[Blondel, Nesterov, Theys]

[Ando, Shih]

Common quadratic Lyapunov function:

Common SOS Lyapunov function [Parrilo, Jadbabaie]

Our approach: use multiple Lyapunov functions
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Multiple Lyapunov functions

Can we do better with more than one Lyapunov function?

How?
max-of-quadratics



11

Multiple Lyapunov functions

Consider another SDP:
min-of-quadratics



12

Even stranger SDPs…

Feasibility of the following  SDP also implies stability:

Where do these conditions come from?

Can we give a unifying framework?
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Representation of Lyapunov inequalities via labeled graphs

What property of the graph implies stability?

[AAA, Jungers, Parrilo, Roozbehani 
SIAM J. on Control and Opt.,’13]
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Graph expansion



15

Path-complete graphs

Defn. A labeled directed graph G(N,E) is path-complete if for 
every word of finite length there is an associated directed path 
in its expanded graph Ge(Ne,Ee).

Path-completeness can 
be checked with standard 
algorithms in automata 
theory
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Path-complete graphs and stability

Gives immediate proofs 
for existing methods

Introduces numerous 
new methods

THM. If Lyapunov functions satisfying Lyapunov inequalities
associated with any path-complete graph are found, 
then the switched system is uniformly stable (i.e., JSR<1).



17

Quick proofs

For example:
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Let’s revisit our strange SDP
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Approximation guarantees 

THM. Given any desired accuracy

we can explicitly construct a graph G (with ml-1 nodes)
such that the corresponding SDP achieves the accuracy.

max-of-quadraticsmin-of-quadratics

- tighter than known SOS bounds 
- proof relies on the John’s ellipsoid thm
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No bound on size of SDP

THM. [AAA, Jungers, IFAC’14] 

Given any positive integer d,
there are families of switched systems that are uniformly stable 
(i.e., have JSR<1), but yet this fact cannot be proven with

•a polynomial Lyapunov function of degree ≤ d

•a max-of-quadratics Lyapunov function with ≤ d pieces

•a min-of-quadratics Lyapunov function with ≤ d pieces

•a polytopic Lyapunov function with ≤ d facets.

Kozyakin’90:

JSR<1 JSR>1
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JSR of Rank One Matrices
and the Maximum Cycle Mean Problem

[AAA, Parrilo, IEEE Conf. on Decision and Control,’12]
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Basic facts about rank one matrices

A rank one iff

spectral radius:

Products of rank one matrices have rank at most one:
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Cycles and cycle gains

Easy definitions:
•Cycle
•Simple cycle
•Cycle gain

•Maximum cycle gain

•Gain-maximizing cycle
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From matrix products to cycles in graphs

Nodes: matrices

Complete directed graph on m nodes:

Edge weights:
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Maximum cycle gain gives the JSR

Thm: Let cmax be a gain-maximizing cycle, with lmax and ρcmax

denoting its length and the product of the weights on its edges, 
respectively.
Then, the joint spectral radius is given by:

Proof sketch:
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Finiteness property and the optimal product

Corollary: 

•The JSR is achieved by the spectral radius of a 
finite matrix product, of length at most m. 
(In particular, the finiteness property holds. – independently 
shown by Gurvits et al.)

•There always exists an optimal product where no matrix 
appears more than once.

Proof: A simple cycle does not visit a node twice. 

Bound of m is tight.
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Not fun to enumerate all simple cycles…
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Maximum Cycle Mean Problem (MCMP)

• Cycle mean

• Maximum cycle mean (MCM)
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Karp’s algorithm for MCMP

 Run time O(|N||E|)
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Take logs and apply Karp

Nodes: matrices

Complete directed graph on m nodes:

Edge weights:

Run time: O(m3+m2n)
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Common quadratic Lyapunov function can fail

 (can be proven e.g. using our algorithm)

 An LMI searching for a common quadratic Lyapunov 
function can only prove
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Nonlinear Switched Systems 
&

SOS-Convex Lyapunov Functions

[AAA, Jungers, IEEE Conf. on Decision and Control,’13]
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Nonlinear switched systems

Lemma: 
Unlike the linear case, a common Lyapunov function for the 
corners does not imply stability of the convex hull.

Ex. Common Lyapunov function:

But unstable:
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But a convex Lyapunov function implies stability

Suppose we can find a convex common Lyapunov function:

Then, then we have stability of the convex hull.

Proof:
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SOS-Convexity

Search for an sos-convex Lyapunov function is an SDP!
But except for some specific degrees and dimensions, 
there are convex polynomials that are not sos-convex:
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[AAA, Parrilo – Math Prog., ’11]

sos (Helton &Nie)

sos-convex
Lyapunov function:

sos-convex
polynomial:
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ROA Computation via SDP

sos-convex, deg=14

• Left: 
Cannot make any 
statements about ROA

• Right: 
Level set is part of ROA 
under arbitrary 
switching

non-convex, deg=12
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A converse Lyapunov theorem

Proof idea:
Approximate original Lyapunov function with 
convex polynomials
In a second step, go from convex to sos-convex

 Uses a Positivstellensatz result of Claus Scheiderer:

Thm: SOS-convex Lyapunov functions are universal
(i.e., necessary and sufficient) for stability.

Given any two positive definite forms g and h, 
there exists an integer k such that g.hk is sos.
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Joint Spectral Radius 

Has lots of applications…

Want to know more? http://aaa.princeton.edu/

Powerful approximation algorithms based on
Lyapunov theory + optimization…

A lot less understood for 
nonlinear switched systems…


