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The Joint Spectral Radius

Given a finite set of 70 X 7 matrices

Joint spectral radius (JSR):

k—oo gc{1,...,m}"

p(A) = lim max ||A,,..A,, A, ||""

{A1, ..., An}

If only one matrix:
A= {A}

Spectral Radius
p(A) = lim || A¥[|7
k— o0

{ ey
‘-

G. C. Rota and W. G. Strang
A note on the joint spectral radius
Indag. Math., 22:379-381, 1960.,



Trackability of Graphs

Noisy observations: .
How does the number of possible

¢ ¢ paths grow with length of
* 666 0 observation?

N(t): max. number of possible paths over all observations of length t

Graph is called trackable if N(t) is bounded by a polynomial in t

A={A1, Ay, A3} p(A) = Jim N(1)"*
Graph trackable iff p(A) < 1
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JSR and Switched/Uncertain Linear Systems

Linear dynamics: Lf11 — A:I;k‘
. 1
Spectral radius: /O(A) = kh_>1'1’1 HAka
O

“Stable” iff p(A) <1

Switched linear dynamics: -517]@+1 — Az
= (i) oot ‘

Joint spectral radius (JSR).

p(A) = lim  max |4, A@Aglu”‘“
k—oo gc{l,...,m}"*

“Uniformly stable” iff p(.A) <1




Stability around an equilibrium point
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Controller design for this humanoid presented in:
[Majumdar, AAA, Tedrake, CDC’14 — submitted]

Done by SDSOS Optimization
[AAA, Majumdar,’13]



Computation of JSR

If only one matrix: 4 = { A}
Testing “p(A) < 177 decidable in polynomial time

For more than one matrix:
Testing “p(A) < 177 undecidable [Blondel, Tsitsiklis]

(even for 2 matrices of size 47x47 1)
=Open problem: decidability of testing “p(.A) < 177
*"\Would become decidable if rational finiteness conjecture is true

sLower bounds on JSR:  p(A,, ... Agl)l/k < p(A)

=Finiteness conjecture: equality achieved at finite k

=Upper bounds on JSR: from Lyapunov theory
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This Talk

1. A meta-SDP-algorithm for computing upper bounds
Lyapunov theory + basic automata theory

2. Exact JSR of rank-one matrices
via dynamic programming

3. Uncertain nonlinear systems

SOS-convex Lyapunov functions




Common Lyapunov function

Lh+1 = Ay
A = {Alj...,Am} f—IL_,;

If we can find a function V(:z:) -R*" - R

such that V(CE‘) > 0}
V(Az) <V(z), Vi=1,...,m

then, p(A) <1

Such a function always exists! But may be extremely difficult to find!!

© i 8




Computationally-friendly common Lyapunov functions
Tipr1 = Az A = {Aq, .. A}

If we can find a function V([L’) -R" 5 R

such that V(x) > 0,
V(Aix) < V(x), Vi=1,...,m

then, p(.A) < 1

=Common quadratic Lyapunov function: V (z) = 2T Pz

AJPA; X PVYi=1,...,m {Ando, Shin]

[Blondel, Nesterov, Theys]

"Common SOS Lyapunov function [Parrilo, Jadbabaie]

ey Our approach: use multiple Lyapunov functions = N,




Multiple Lyapunov functions

=Can we do better with more than one Lyapunov function?

"How?
max-of-quadratics

="Consider the SDP:

AirPlAl = Py,
AT P Ay = Py,
ATPA, < Py,
AT PAs = P,
P = 0.
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Multiple Lyapunov functions

mConsider another SDP:

A{Plﬂl = Py,
AgPQAQ = P,
A?Pl Al j PQ.*.
AT PyAys < P,
P ~ 0.

min-of-quadratics
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Even stranger SDPs...

=Feasibility of the following SDP also implies stability:

ATpA,
(AsA1)TP(AsAy)
(A3)T P(A3)

P

Y I LA TA
S vum

p(A) <1

=\Where do these conditions come from?

=Can we give a unifying framework?
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Representation of Lyapunov inequalities via labeled graphs

Vi(Aix) < Vi(z) VzeR™

A

/

[AAA, Jungers, Parrilo, Roozbehani
SIAM J. on Control and Opt., 13]

AlTplAl = P
ATPA < Py
AP Ay < P
AT P Ay < P
.PLQ > ()

A, A,
o

T ="\What property of the graph implies stability?
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Graph expansion
A A A,

Graph G(N,E)

Expanded Graph G¢(\N¢ E¢)

A,A,
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Path-complete graphs

Defn. A labeled directed graph G(N,E) is path-complete if for
every word of finite length there is an associated directed path
in its expanded graph G&(N¢,E®).

=Path-completeness can
be checked with standard
algorithms in automata
theory

(a)
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Path-complete graphs and stability

THM. If Lyapunov functions satisfying Lyapunov inequalities
associated with any path-complete graph are found,
then the switched system is uniformly stable (i.e., JSR<1).

=Gives immediate proofs
for existing methods

®"Introduces numerous
new methods

(a)
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For example:

min-of-quadratics

Quick proofs

AT P A,
AT Py A,
AT P, A,
AT Py A,

A TATATA
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Let’s revisit our strange SDP

ATPA,
(AyA;)TP(AsA,)
(A341)" P(A3A,)

(A3)" P(A)

A TATATA
T U U
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Approximation guarantees
min-of-quadratics max-of-quadratics

Q| e0 Cal | ee
—=P(A) < p(A) < p(A)
- tighter than known SOS bounds

4
vn
- proof relies on the John’s ellipsoid thm

THM. Given any desired accuracy

1
%p(«‘l) < p(A) < p(A)
we can explicitly construct a graph G (with m'* nodes)
such that the corresponding SDP achieves the accuracy. g




No bound on size of SDP

THM. [AAA, Jungers, IFAC’14]

Given any positive integer d,

there are families of switched systems that are uniformly stable
(i.e., have JSR<1), but yet this fact cannot be proven with

ea polynomial Lyapunov function of degree < d
ea max-of-quadratics Lyapunov function with < d pieces
ea min-of-quadratics Lyapunov function with < d pieces

ea polytopic Lyapunov function with < d facets.

Kozyakin’90: Ay — (1 —t4) [m 1 Ay = (1— [Jlfz _t ]
(1 —37t3/2) 0 0 t V1 —t2

t = Siﬂ% JSR«<1 t =sin2r JSR>1

2k 20




JSR of Rank One Matrices
and the Maximum Cycle Mean Problem

[AAA, Parrilo, IEEE Conf. on Decision and Control,/12]
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Basic facts about rank one matrices
Arankoneiff A = ay!

spectral radius: \yT:U\

Products of rank one matrices have rank at most one:

T . T
AiAj = xy; xjy;

(y! zj)zy)

22



Cycles and cycle gains

Easy definitions:
*Cycle

*Simple cycle
*Cycle gain

ke
Pe — H-j.:]_ “U_?(E’.i)

L/ k
g(c) = pe’

*Maximum cycle gain
max, g(c)

*Gain-maximizing cycle

Cmar

23



From matrix products to cycles in graphs

A = {Alﬁ e ?ATTI-} Az — L4l T

1

GA Complete directed graph on m nodes:

Nodes: matrices A;

Edge weights: w(ez-j) = ‘yij‘




Maximum cycle gain gives the JSR

Thm: Let ¢, , be a gain-maximizing cycle, with /__ and p_,..,

denoting its length and the product of the weights on its edges,
respectively.

Then, the joint spectral radius is given by:

p(A) = pp/ /e

Cma:c

Proof sketch'
/O(A t = Pe
.\fw
/ v
\3“‘» (A) = limsup max
. p(A) msup max p¥ (.

H
0 \‘/ 25

P, A )VE = (T, )

[T (ot

]-,! Emax
fc??la:l’:

A

o [
—
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Finiteness property and the optimal product

Corollary:

*The JSR is achieved by the spectral radius of a

finite matrix product, of length at most m.

(In particular, the finiteness property holds. — independently
shown by Gurvits et al.)

*There always exists an optimal product where no matrix
appears more than once.

Proof: A simple cycle does not visit a node twice. H

Bound of mis tight.
© i 26




Not fun to enumerate all simple cycles..
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Maximum Cycle Mean Problem (MCMP)

* Cycle mean

 Maximum cycle mean (MCM)

A" = max. m(c)
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Karp’s algorithm for MCMP

Proposed by Karp in 1978, based on dynamic programming
Let s be an arbitrary vertex

For every vertex v and integer k, define F,(v) as the minimum
weight of an edge progression of length k from sto v

F.(v) can be computed via a simple DP recursion

From this, the MCM can be computed as:

= Run time O([N|[E|) L



Take logs and apply Karp
A = {Alﬁ c e ?ATTE-} Aa — Lql T

1

GA Complete directed graph on m nodes:

Nodes: matrices A; Edge weights: w(eij) — 10g ‘y@T:L‘J‘

30



Common quadratic Lyapunov function can fail

1 0 0 1
Al:h 0}"42:{0 —1}

* p(A) = 1 (canbe proven e.g. using our algorithm)

" An LMI searching for a common quadratic Lyapunov
function can only prove

p(A) < V2

31



Nonlinear Switched Systems
&
SOS-Convex Lyapunov Functions

[AAA, Jungers, IEEE Conf. on Decision and Control,13]
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Nonlinear switched systems Folar)
fl(xk)

Trt1 = f(xy)

f(mk) S CO?’EU{fl(Ik), et &fm(mk)}

fl,”,,fm:Rn—}Rn ,(JEL;)

Lemma:
Unlike the linear case, a common Lyapunov function for the
corners does not imply stability of the convex hull.

Ex. Common Lyapunov function:
fi(z) = (2122,0)" V(z) = zizs + (xf + 23)
fa(z) = (0,2122)" V(fi(z)) = ziz; < V(x) = i) + (z] + 23)
But unstable:
f(z) = (;1:123:21 ml;‘?) € conv{ fi(zr), fo(zr)} 33




But a convex Lyapunov function implies stability

—

Tht1 = f(mk) f?(ﬂjk)

~ fl(xk)
f(mk) S Conv{fl(xk)ﬁ SN fm(mk)}
fla---:-fm : R — R"™

(1)

Suppose we can find a convex common Lyapunov function:

VF(I) = 0? If(f?(j:)) = VP(I) fDl‘ E — 1? cae sy IR

Then, then we have stability of the convex hull.

m m

Proof: V Zﬂf?fz ) < Z o;V(fi(x)) < V(x)
i=1 34




SOS-Convexity

s0s-convex yTH(LU)y SOS (Helton &Nie)

polynomial:

sos-convex V (ZU ) SOS-COveEX
Lyapunov function: V(CE’) o V(fz(af)) 508

sSearch for an sos-convex Lyapunov function is an SDP!
"But except for some specific degrees and dimensions,
there are convex polynomials that are not sos-convex:

P(X) = 32x° + 118X, X2 + 40X, XZ + 25X] X5 — 43X x5 %2

— 35X X5 + 3X X5 XE —16X XS X5 + 24X Xe + 16X

+44X2 X2 + 70X;5 X5 + 60X5 xS + 30%S

[AAA, Parrilo — Math Prog., '11] 35




ROA Computation via SDP

f- (;‘f‘) o 06873‘1 + {]5583‘2 — .0001.'1?1:172
&) = —0.292x1 + 0.773x2

(o) = (036901 +0.5520, — 000123
2\t) = —1.27x1 + 0.1225 — .000121 25

o Left:
Cannot make any
statements about ROA
e Right:
Level set is part of ROA
under arbitrary
switching

06 02 02 06 38 04 0 04

non-convex, deg=12 sos-convex, deg=14
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A converse Lyapunov theorem

Tri1 € conv{A;x}, i=1,....,m

Thm: SOS-convex Lyapunov functions are universal
(i.e., necessary and sufficient) for stability.

Proof idea:

= Approximate original Lyapunov function with
convex polynomials

"|In a second step, go from convex to sos-convex
m Uses a Positivstellensatz result of Claus Scheiderer:

Given any two positive definite forms g and h,
there exists an integer k such that g.h* is sos.
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Joint Spectral Radius

p(A)= lim max |Ag, ...As, A, ||""
\ kHOOJE{l,m}

%b}\:
Has lots of applications... %ﬁ

T
Powerful approximation algorithms based on ﬁ%ﬁlf
PO 5 Pr1As
Lyapunov theory + optimization... AT Py A,
AP, A,

A lot less understood for
nonlinear switched systems...

® A Want to know more?

LA TATA LA
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