DSOS, SDSOS Optimization: More Tractable Alternatives to SOS Optimization

Amir Ali Ahmadi
Princeton University
Dept. of Operations Research and Financial Engineering (ORFE)
Joint work with:
Anirudha Majumdar (Stanford \rightarrow Princeton)

Optimization over nonnegative polynomials

Defn. A polynomial $p(x):=p\left(x_{1}, \ldots, x_{n}\right)$ is nonnegative if $p(x) \geq 0, \forall x \in \mathbb{R}^{n}$.

Ex. Decide if the following polynomial is nonnegative:

$$
\begin{aligned}
p(x)= & x_{1}^{4}-6 x_{1}^{3} x_{2}+2 x_{1}^{3} x_{3}+6 x_{1}^{2} x_{3}^{2}+9 x_{1}^{2} x_{2}^{2}-6 x_{1}^{2} x_{2} x_{3} \\
& -14 x_{1} x_{2} x_{3}^{2}+4 x_{1} x_{3}^{3}+5 x_{3}^{4}-7 x_{2}^{2} x_{3}^{2}+16 x_{2}^{4}
\end{aligned}
$$

Basic semialgebraic set:
$\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \geq 0, h_{i}(x)=0\right\}$
Ex. $2 x_{1}+5 x_{1}^{2} x_{2}-x_{3} \geq 0$

$$
5-x_{1}^{3}+2 x_{1} x_{3}=0
$$

Application 1: verification of dynamical systems

$$
\begin{aligned}
\dot{x} & =f(x) \\
x_{k+1} & =f\left(x_{k}\right)
\end{aligned}
$$

Properties of interest:

- Stability of equilibrium points
- Boundedness of trajectories
- Invariance of sets
- Collision avoidance

Search for functions

 satisfying certain nonnegativity constraintsE.g. - existence of a Lyapunov function

$$
\begin{gathered}
V(x)>0 \\
V(x) \leq \beta \Rightarrow \dot{V}(x)<0
\end{gathered}
$$

implies $\{x \mid V(x) \leq \beta\}$ is in the

2: Statistics and Machine Learning

- Shape-constrained regression; e.g., monotone regression

- How to parameterize a polynomial $p\left(x_{1}, x_{2}\right)$ to enforce monotonicity over $[0,1]^{2}$?
- Need its partial derivatives to be nonnegative over $[0,1]^{2}$.
- Let's see a simple example in one variable...

Imposing monotonicity

- For what values of a, b is the following polynomial monotone over $[0,1]$?

$$
p(x)=x^{4}+a x^{3}+b x^{2}-(a+b) x
$$

$$
a=-1, b=-3
$$

How to prove nonnegativity?

$$
\begin{aligned}
p(x)= & x_{1}^{4}-6 x_{1}^{3} x_{2}+2 x_{1}^{3} x_{3}+6 x_{1}^{2} x_{3}^{2}+9 x_{1}^{2} x_{2}^{2}-6 x_{1}^{2} x_{2} x_{3} \\
& -14 x_{1} x_{2} x_{3}^{2}+4 x_{1} x_{3}^{3}+5 x_{3}^{4}-7 x_{2}^{2} x_{3}^{2}+16 x_{2}^{4} \text { Nonnegative } \\
\uparrow(x)= & \left(x_{1}^{2}-3 x_{1} x_{2}+x_{1} x_{3}+2 x_{3}^{2}\right)^{2}+\left(x_{1} x_{3}-x_{2} x_{3}\right)^{2} \text { sOs } \\
& +\left(4 x_{2}^{2}-x_{3}^{2}\right)^{2} .
\end{aligned}
$$

- Extends to the constrained case:

$$
p(x)=\sigma_{0}(x)+\sum \sigma_{i}(x) g_{i}(x), \sigma_{i}(x) \text { SOS } \Rightarrow p(x) \geq 0 \text { on }\left\{x \mid g_{i}(x) \geq 0\right\}
$$

- The search for such algebraic certificates ----> SDP!!
- Can produce a hierarchy; connections to Hilbert's $17^{\text {th }}$ problem, etc.
- Fundamental work of many: [Lasserre, Nesterov, Parrilo, Shor, ...]

Local stability - SOS on the Acrobot

Controller

 designed by SOS[Majumdar, AAA, Tedrake]

Practical limitations of SOS

- Scalability is a nontrivial challenge!

Thm: $\boldsymbol{p}(\boldsymbol{x})$ of degree $\mathbf{2 d}$ is sos if and only if

$$
\begin{gathered}
p(x)=z^{T} Q z \quad Q \succeq 0 \\
z=\left[1, x_{1}, x_{2}, \ldots, x_{n}, x_{1} x_{2}, \ldots, x_{n}^{d}\right]^{T}
\end{gathered}
$$

- The size of the Gram matrix is:

$$
\binom{n+d}{d} \times\binom{ n+d}{d}
$$

- Polynomial in n for fixed d, but grows quickly
- The semidefinite constraint is expensive
- E.g., local stability analysis of a 20-state cubic vector field is typically an SDP with $\sim 1.2 \mathrm{M}$ decision variables and $\sim 200 \mathrm{k}$ constraints

Simple idea...

- Let's not work with SOS...
- Give other sufficient conditions for nonnegativity that are perhaps stronger than SOS, but hopefully cheaper

[AAA, Majumdar]

Not any set inside SOS would work...

Consider, e.g., the following two sets:

1) All polynomials that are sums of $4^{\text {th }}$ powers of polynomials
2) All polynomials that are sums of $\mathbf{3}$ squares of polynomials

Both sets are clearly inside the SOS cone

- But linear optimization over either set is intractable!

- So set inclusion doesn't mean anything in terms of complexity
- We have to work a bit harder...

dsos and sdsos

Defn. A polynomial \boldsymbol{p} is diagonally-dominant-sum-of-squares (dsos) if it can be written as:

$$
p(x)=\sum_{i} \alpha_{i} m_{i}^{2}(x)+\sum_{i, j} \beta_{i j}^{+}\left(m_{i}(x)+m_{j}(x)\right)^{2}+\sum_{i, j} \beta_{i j}^{-}\left(m_{i}(x)-m_{j}(x)\right)^{2}
$$

for some monomials m_{i}, m_{j} and nonnegative scalars $\alpha_{i}, \beta_{i j}^{+}, \beta_{i j}^{-}$

Defn. A polynomial \boldsymbol{p} is scaled-diagonally-dominant-sum-ofsquares (sdsos) if it can be written as:

$$
p(x)=\sum_{i} \alpha_{i} m_{i}^{2}(x)+\sum_{i, j}\left(\hat{\beta}_{i j}^{+} m_{i}(x)+\tilde{\beta}_{i j}^{+} m_{j}(x)\right)^{2}+\sum_{i j}\left(\widehat{\beta}_{\overline{i j}} m_{i}(x)-\tilde{\beta}_{\overline{i j}}^{T_{j}} m_{j}(x)\right)^{2},
$$

for some monomials m_{i}, m_{j} and scalars $\alpha_{i}, \hat{\beta}_{i j}^{+}, \tilde{\beta}_{i j}^{+}, \hat{\beta}_{i j}^{-}, \tilde{\hat{p}}_{i j}^{-}$with $\alpha_{i} \geq 0$.

Obvious: $D S O S_{n, d} \subseteq S D S O S_{n, d} \subseteq S O S_{n, d} \subseteq P O S_{n, d} 11$
ORFE

r-dsos and r-sdsos

Defn. A polynomial \boldsymbol{p} is r-diagonally-dominant-sum-ofsquares (r-dsos) if

$$
p \cdot\left(\sum_{i} x_{i}^{2}\right)^{r}
$$

is dsos.

Defn. A polynomial p is r-scaled-diagonally-dominant-sum-of-squares (r-sdsos) if

$$
p \cdot\left(\sum_{i} x_{i}^{2}\right)^{r}
$$

is sdsos.

Allows us to develop a hierarchy of relaxations...

dd and sdd matrices

Defn. A symmetric matrix A is diagonally dominant (dd) if

$$
a_{i i} \geq \sum_{j \neq i}\left|a_{i j}\right| \text { for all } i
$$

Defn*. A symmetric matrix A is scaled diagonally dominant (sdd) if there exists a diagonal matrix $D>0$ s.t.

$D A D$ is dd.

$$
d d \Rightarrow s d d \Rightarrow p s d
$$

Optimization over these sets is an SDP, SOCP, LP !!

Two natural matrix programs: DDP and SDPP

$$
\begin{array}{ll}
& \min \langle C, X\rangle \\
\text { LP: } & A(X)=b \\
& X \text { diagonal\&nonnegative } \\
& \min \langle C, X\rangle \\
\text { DDP: } & A(X)=b \\
& X \text { dd } \\
\text { SDDP: } & \min \langle C, X\rangle \\
& A(X)=b \\
& X \text { sdd } \\
& \min \langle C, X\rangle \\
\text { SDP: } & A(X)=b \\
& X \succeq 0
\end{array}
$$

From matrices to polynomials

The. A polynomial p is d sos

$$
p=\sum_{i} \alpha_{i} m_{i}^{2}+\sum_{i, j} \beta_{i j}^{+}\left(m_{i}+m_{j}\right)^{2}+\beta_{i j}^{-}\left(m_{i}-m_{j}\right)^{2},
$$

if and only if

$$
\begin{gathered}
p(x)=z^{T}(x) Q z(x) \\
Q d d
\end{gathered}
$$

Thy. A polynomial \boldsymbol{p} is sdsos

$$
p=\sum_{i} \alpha_{i} m_{i}^{2}+\sum_{i, j}\left(\beta_{i}^{+} m_{i}+\gamma_{j}^{+} m_{j}\right)^{2}+\left(\beta_{i}^{-} m_{i}-\gamma_{j}^{-} m_{j}\right)^{2},
$$

if and only if

$$
\begin{gathered}
p(x)=z^{T}(x) Q z(x) \\
Q \quad s d d
\end{gathered}
$$

Optimization over r-dsos and r-dsos polynomials

- Can be done by LP and SOCP respectively!
- iSOS: add-on to SPOTless (package by Megretski, Tobenkin, Permenter -MIT)

https://github.com/spot-toolbox/spotless

How well does it do?!

- Our paper shows encouraging experiments from: Control, polynomial optimization, statistics, combinatorial optimization, options pricing, sparse PCA, etc.
- And we'll give converse results

A parametric family

Converse results

Thm. Any even positive definite form \boldsymbol{p} is r -dsos for some \boldsymbol{r}.

- Hence proof of positivity can always be found with LP
- Proof follows from a result of Polya (1928) on Hilbert's $17^{\text {th }}$ problem
(Even forms include copositive programming, nonnegative switched systems, etc.)

Thm. For any positive definite form p, there exists an integer r and a polynomial q of degree r such that q is dsos and $p q$ is dsos.

- Search for q is an LP
- Such a q is a certificate of nonnegativity of p
- Proof follows from a result of Habicht (1940)

Converse results: stability of switched linear systems

Problem:

Given a set of $n \times n$ matrices $M=\left\{A_{1}, \ldots, A_{m}\right\}$ When is the system $x_{k+1}=A_{\sigma(k)} x_{k}$ stable?

Joint spectral radius (JSR) of $M=\left\{A_{1}, \ldots, A_{m}\right\}$:

$$
\rho\left(A_{1}, \ldots, A_{m}\right)=\lim _{k \rightarrow \infty} \max _{\sigma \in\{1, \ldots, m\}^{k}}| | A_{\sigma_{k}} \ldots A_{\sigma_{2}} A_{\sigma_{1}} \|^{1 / k}
$$

Theorem:

Switched linear system is stable $\Leftrightarrow \rho\left(A_{1}, \ldots, A_{m}\right)<1$
Goal: compute upperbounds on JSR

Converse results: stability of switched linear systems

Link to polynomial nonnegativity:

$$
\rho\left(A_{1}, \ldots, A_{m}\right)<1
$$

\exists a pd polynomial Lyapunov function $V(x)$ such that $V(x)-V\left(A_{i} x\right)>0, \forall x \neq 0$.

Semidefinite relaxation [Parrilo, Jadbabaie]:

$$
\begin{gathered}
\rho\left(A_{1}, \ldots, A_{m}\right)<1 \\
\Leftrightarrow
\end{gathered}
$$

\exists an sos polynomial Lyapunov function $V(x)$ such that $V(x)-V\left(A_{i} x\right)$ sos.

Converse results: stability of switched linear systems

Theorem (AAA,Hall): For nonnegative $\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}\right\}, \rho\left(A_{1}, \ldots, A_{m}\right)<1 \Leftrightarrow$
$\exists r \in \mathbb{N}$ and a polynomial Lyapunov function $V(x)$ such that

$$
\begin{equation*}
V\left(x .^{2}\right) \mathrm{r} \text {-dsos and } V\left(x^{2} .^{2}\right)-V\left(A_{i} x^{2} .^{2}\right) \mathrm{r} \text {-dsos. } \tag{*}
\end{equation*}
$$

Proof:
$(\Leftarrow)(\star) \Rightarrow V(x) \geq 0$ and $V(x)-V\left(A_{i} x\right) \geq 0$ for any $x \geq 0$.
Combined to $A_{i} \geq 0$, this implies that $x_{k+1}=A_{\sigma(k)} x_{k}$ is stable for $x_{0} \geq 0$. This can be extended to any x_{0} by noting that $x_{0}=x_{0}^{+}-x_{0}^{-}, x_{0}^{+}, x_{0}^{-} \geq 0$. \Leftrightarrow) From theorem of Parrilo-Jadbabie, and using Polya's result as $V\left(x .^{2}\right)$ and $V\left(x .^{2}\right)-V\left(A_{i} x .^{2}\right)$ are even forms.

Larger-scale applications in control

Stabilizing the inverted N -link pendulum (2N states)

$\mathrm{N}=1$

$\mathrm{N}=2$

Runtime:

2N (\# states)	4	6	8	10	12	14	16	18	20	22
DSOS	<1	0.44	2.04	3.08	9.67	25.1	74.2	200.5	492.0	823.2
SDSOS	<1	0.72	6.72	7.78	25.9	92.4	189.0	424.74	846.9	1275.6
SOS (SeDuMi)	<1	3.97	156.9	1697.5	23676.5	∞	∞	∞	∞	∞
SOS (MOSEK)	<1	0.84	16.2	149.1	1526.5	∞	∞	∞	∞	∞

ROA volume ratio:

2 N (states)	4	6	8	10	12
$\rho_{\text {dsos }} / \rho_{\text {sos }}$	0.38	0.45	0.13	0.12	0.09
$\rho_{\text {sdsos }} / \rho_{\text {sos }}$	0.88	0.84	0.81	0.79	0.79

Stabilizing ATLAS

- 30 states 14 control inputs Cubic dynamics

Done by SDSOS Optimization
[Majumdar, AAA, Tedrake]

More recent directions...

Move towards

real-time algebraic optimization

- e.g., barrier certificates
[Prajna, Jadbabaie, Pappas]

$$
\dot{x}=f(x)
$$

(w/ A. Majumdar, Stanford)

$$
\dot{B}=\langle\nabla B(x), f(x)\rangle \leq 0
$$

More recent directions...

Iterative DSOS/SDSOS via

- Column generation
- Cholesky change of basis

(Next talk!)

(w/ S. Dash, IBM,
G. Hall, Princeton)

Main messages

Want to know more? aaa.princeton.edu

Workshop webpage: aaa.princeton.edu/largesdps

Backup slides...

r-dsos can in fact outperform sos

The Motzkin polynomial:

$$
M\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-3 x_{1}^{2} x_{2}^{2} x_{3}^{2}+x_{3}^{6}
$$

nonnegative but not sos!
...but it's 2-dsos.
(certificate of nonnegativity using LP)

Another ternary sextic:

$$
p\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{4} x_{2}^{2}+x_{2}^{4} x_{3}^{2}+x_{3}^{4} x_{1}^{2}-3 x_{1}^{2} x_{2}^{2} x_{3}^{2}
$$

not sos, but 1-dsos (hence nonnegative)

Minimizing a form on the sphere

$\min _{x \in \mathcal{S}^{n-}}$	${ }_{1} P(x$		- degree=4; all coefficients present - generated randomly				- PC: 16 Gb	$\begin{aligned} & \text { GHz, } \\ & \text { AM } \end{aligned}$
$\mathrm{n}=10$	Lower bound	Run time (secs)	$\mathrm{n}=15$	Lower bound	Run time (secs)	$\mathrm{n}=20$	Lower bound	Run time (secs)
sos (sedumi)	-1.920	1.01	sos (sedumi)	-3.263	165.3	sos (sedumi)	-3.579	5749
sos (mosek)	-1.920	0.184	sos (mosek)	-3.263	5.537	sos (mosek)	-3.579	79.06
sdsos	-5.046	0.152	sdsos	-10.433	0.444	sdsos	-17.333	1.935
dsos	-5.312	0.067	dsos	-10.957	0.370	dsos	-18.015	1.301
BARON	-175.4	0.35	BARON	-1079.9	0.62	BARON	-5287.9	3.69
$\mathrm{n}=30$	Lower bound	Run time (secs)	$\mathrm{n}=40$	Lower bound	Run time (secs)	$\mathrm{n}=50$	Lower bound	Run time (secs)
sOS (sedumi)	---	∞	sos (sedumi)	---------	∞	sos (sedumi)	---------	∞
sos (mosek)	---------	∞	sos (mosek)	---------	∞	sos (mosek)	---------	∞
sdsos	-36.038	9.431	sdsos	-61.248	53.95	sdsos	-93.22	100.5
dsos	-36.850	8.256	dsos	-62.2954	26.02	dsos	-94.25	72.79
BARON	-28546.1							

SOS \rightarrow SDP

Q. Is it any easier to decide sos?
 [Lasserre], [Nesterov], [Parrilo]

-Yes! Can be reduced to a semidefinite program (SDP)

Thm: A polynomial $\boldsymbol{p}(\boldsymbol{x})$ of degree $\mathbf{2 d}$ is sos if and only if there exists a matrix Q such that

$$
\begin{aligned}
& Q \succcurlyeq 0 \\
& p(x)=z(x)^{T} Q z(x),
\end{aligned}
$$

where

$$
z=\left[1, x_{1}, x_{2}, \ldots, x_{n}, x_{1} x_{2}, \ldots, x_{n}^{d}\right]^{T}
$$

Application 1: polynomial optimization

$\min _{x} p(x)$
$f_{i}(x) \leq 0$
$h_{i}(x)=0$

Equivalent formulation:

$$
\forall x \in\left\{f_{i}(x) \leq 0, h_{i}(x)=0\right\}
$$

- Many applications:
-Combinatorial optimization (including all problems in NP)
-Computation of equilibria in games
-Machine learning (shape constrained regression, topic modeling, etc.)
-The optimal power flow (OPF) problem
-Sensor network localization
-Optimal configurations for formation flying

