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Optimization over nonnegative polynomials

Ex. Decide if the following polynomial is nonnegative:

Ex.

Basic semialgebraic set:

Ubiquitous in computational mathematics!



Application 1: verification of dynamical systems

Search for functions 
satisfying certain 

nonnegativity constraints

Lyapunov 
Theory

Properties of interest:
• Stability of equilibrium points
• Boundedness of trajectories
• Invariance of sets
• Collision avoidance
• …  

E.g. - existence of a Lyapunov function
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• Shape-constrained regression; e.g., monotone regression

2: Statistics and Machine Learning

(From [Gupta et 
al.,’15])
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Imposing monotonicity 
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How to prove nonnegativity?

Nonnegative

SOS
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Local stability – SOS on the Acrobot

[Majumdar, AAA, Tedrake ]
(Best paper award - IEEE Conf. on Robotics and Automation)

Swing-up:

Balance:

Controller 
designed by SOS

(4-state system)
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Practical limitations of SOS

• Scalability is a nontrivial challenge!

Thm: p(x) of degree 2d is sos if and only if

• The size of the Gram matrix is:

• Polynomial in n for fixed d, but grows quickly

• The semidefinite constraint is expensive

• E.g., local stability analysis of a 20-state cubic vector field is typically 
an SDP with ~1.2M decision variables and ~200k constraints



9

Simple idea…

• Let’s not work with SOS…

• Give other sufficient conditions for nonnegativity that are 
perhaps stronger than SOS, but hopefully cheaper

[AAA, Majumdar]
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Not any set inside SOS would work…

1) All polynomials that are sums of 4th powers of polynomials

2) All polynomials that are sums of 3 squares of polynomials

Both sets are clearly inside the SOS cone

Consider, e.g., the following two sets:

• But linear optimization over either set is intractable!

• So set inclusion doesn’t mean anything in terms of complexity

• We have to work a bit harder…
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dsos and sdsos

Defn. A polynomial p is diagonally-dominant-sum-of-squares
(dsos) if it can be written as:

for some monomials 
and nonnegative scalars

Defn. A polynomial p is scaled-diagonally-dominant-sum-of-
squares (sdsos) if it can be written as:

for some monomials 
and scalars

Obvious:
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r-dsos and r-sdsos

Defn. A polynomial p is r-diagonally-dominant-sum-of-
squares (r-dsos) if 

is dsos.

Defn. A polynomial p is r-scaled-diagonally-dominant-sum-
of-squares (r-sdsos) if

is sdsos.

Allows us to develop a hierarchy of relaxations…
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dd and sdd matrices

Defn. A symmetric matrix A is diagonally dominant (dd) if

Defn*. A symmetric matrix A is scaled diagonally dominant 
(sdd) if there exists a diagonal matrix D>0 s.t.

DAD is dd.

*Thanks to Pablo Parrilo for telling us about sdd matrices.

Greshgorin’s circle theorem
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Optimization over these sets is an SDP, SOCP, LP !!
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Two natural matrix programs: DDP and SDPP

LP:

SDP:

SDDP:

DDP:
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From matrices to polynomials
Thm. A polynomial p is dsos

if and only if

Thm. A polynomial p is sdsos

if and only if
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Optimization over r-dsos and r-dsos polynomials

• Can be done by LP and SOCP respectively!

• iSOS: add-on to SPOTless (package by Megretski, Tobenkin, Permenter –MIT) 

https://github.com/spot-toolbox/spotless

How well does it do?!
• Our paper shows encouraging experiments from:

Control, polynomial optimization, statistics, combinatorial 
optimization, options pricing, sparse PCA, etc.

• And we’ll give converse results
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A parametric family
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Converse results

Thm. Any even positive definite form p is r-dsos for some r.

Thm. For any positive definite form p, there exists an integer 
r and a polynomial q of degree r such that

q is dsos and pq is dsos.

• Search for q is an LP

• Such a q is a certificate of nonnegativity of p

• Proof follows from a result of Habicht (1940)

(Even forms include copositive programming, nonnegative switched systems, etc.)
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Converse results: stability of switched linear systems
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Converse results: stability of switched linear systems
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Converse results: stability of switched linear systems
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Larger-scale 
applications in 
control
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Stabilizing the inverted N-link pendulum (2N states)

N=1
N=2

N=6

Runtime:

ROA volume ratio:

(w/ Majumdar, Tedrake)
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Stabilizing ATLAS

[Majumdar, AAA, Tedrake]

Done by SDSOS Optimization

• 30 states        14 control inputs    Cubic dynamics
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More recent directions…

(w/ A. Majumdar, Stanford)

Move towards 
real-time algebraic optimization

- e.g., barrier certificates
[Prajna, Jadbabaie, Pappas]
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More recent directions…

(w/ S. Dash, IBM, 
G. Hall, Princeton)

Iterative DSOS/SDSOS via 
- Column generation

- Cholesky change of basis
(Next talk!)



Main messages
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Want to know more?
aaa.princeton.edu

Workshop webpage:
aaa.princeton.edu/largesdps



Backup slides…
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r-dsos can in fact outperform sos

nonnegative but not sos!

The Motzkin polynomial:

…but it’s 2-dsos.
(certificate of nonnegativity using LP)

Another ternary sextic:

not sos, but 1-dsos (hence nonnegative)
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Minimizing a form on the sphere
• degree=4; all coefficients 

present – generated randomly

n=10 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -1.920 1.01

sos (mosek) -1.920 0.184

sdsos -5.046 0.152

dsos -5.312 0.067

BARON -175.4 0.35
n=30 Lower 

bound
Run 
time
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -36.038 9.431

dsos -36.850 8.256

BARON -28546.1

n=15 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -3.263 165.3

sos (mosek) -3.263 5.537

sdsos -10.433 0.444

dsos -10.957 0.370

BARON -1079.9 0.62
n=40 Lower 

bound
Run 
time 
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -61.248 53.95

dsos -62.2954 26.02

n=20 Lower 
bound

Run 
time 
(secs)

sos (sedumi) -3.579 5749

sos (mosek) -3.579 79.06

sdsos -17.333 1.935

dsos -18.015 1.301

BARON -5287.9 3.69
n=50 Lower 

bound
Run 
time 
(secs)

sos (sedumi) --------- ∞

sos (mosek) --------- ∞

sdsos -93.22 100.5

dsos -94.25 72.79

• PC: 3.4 GHz, 

16 Gb RAM
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SOSSDP

Q. Is it any easier to decide sos?

Yes!  Can be reduced to a semidefinite program (SDP)

[Lasserre], [Nesterov], [Parrilo]
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Application 1: polynomial optimization

Many applications:

Equivalent 
formulation:

Combinatorial optimization (including all problems in NP)

Computation of equilibria in games

Machine learning (shape constrained regression, topic modeling, etc.)

The optimal power flow (OPF) problem

Sensor network localization

Optimal configurations for formation flying


