DSOS, SDSOS Optimization: More Tractable Alternatives to SOS Optimization

Amir Ali Ahmadi Princeton University

Dept. of Operations Research and Financial Engineering (ORFE)

Joint work with:

Anirudha Majumdar (Stanford→Princeton)

CDC 2016, Las Vegas Workshop on "Solving large-scale SDPs with applications to control, machine learning, and robotics"

Optimization over nonnegative polynomials

Defn. A polynomial $p(x) \coloneqq p(x_1, \dots, x_n)$ is nonnegative if $p(x) \ge 0, \forall x \in \mathbb{R}^n$.

Ex. Decide if the following polynomial is nonnegative:

$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_3^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3 -14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$$

Basic semialgebraic set:

$$\{ x \in \mathbb{R}^n | f_i(x) \ge 0, h_i(x) = 0 \\ \text{Ex. } 2x_1 + 5x_1^2x_2 - x_3 \ge 0 \\ 5 - x_1^3 + 2x_1x_3 = 0$$

PRINCETON EORFE Ubiquitous in computational mathematics!

Application 1: verification of dynamical systems

E.g. - existence of a Lyapunov function

V(x) > 0, $V(x) \le \beta \Rightarrow \dot{V}(x) < 0$

implies $\{x | V(x) \le \beta\}$ is in the region of attraction (ROA).

2: Statistics and Machine Learning

• Shape-constrained regression; e.g., monotone regression

• How to parameterize a polynomial $p(x_1, x_2)$ to enforce monotonicity over $[0,1]^2$?

- Need its partial derivatives to be nonnegative over $[0,1]^2$.
- Let's see a simple example in one variable...

Imposing monotonicity

• For what values of *a*, *b* is the following polynomial monotone over [0,1]?

$$p(x) = x^4 + ax^3 + bx^2 - (a+b)x$$

How to prove nonnegativity?

• Extends to the constrained case:

 $p(x) = \sigma_0(x) + \sum \sigma_i(x) g_i(x), \sigma_i(x) SOS \Rightarrow p(x) \ge 0 \text{ on } \{x \mid g_i(x) \ge 0\}$

- The search for such algebraic certificates ----> SDP!!
- Can produce a hierarchy; connections to Hilbert's 17th problem, etc.
- Fundamental work of many: [Lasserre, Nesterov, Parrilo, Shor, ...]

UNIVERSITY

Local stability – SOS on the Acrobot

Controller designed by SOS

UNIVERSITY

[Majumdar, AAA, Tedrake] (Best paper award - *IEEE Conf. on Robotics and Automation*)

7

Practical limitations of SOS

• **Scalability** is a nontrivial challenge!

Thm: *p(x)* of degree *2d* is sos if and only if

$$p(x) = z^T Q z \quad Q \succeq 0$$

 $z = [1, x_1, x_2, \dots, x_n, x_1 x_2, \dots, x_n^d]^T$

• The size of the Gram matrix is:

$$\binom{n+d}{d} \times \binom{n+d}{d}$$

- Polynomial in *n* for fixed *d*, but grows quickly
 - The semidefinite constraint is expensive
- E.g., local stability analysis of a 20-state cubic vector field is typically an SDP with ~1.2M decision variables and ~200k constraints

Simple idea...

- Let's not work with SOS...
- Give other sufficient conditions for nonnegativity that are **perhaps stronger than SOS, but hopefully cheaper**

Not any set inside SOS would work...

Consider, e.g., the following two sets:

- 1) All polynomials that are sums of 4th powers of polynomials
- 2) All polynomials that are **sums of 3 squares of polynomials** Both sets are clearly inside the SOS cone

- But linear optimization over either set is intractable!
- So set inclusion doesn't mean anything in terms of complexity
- We have to work a bit harder...

POS

dsos and sdsos

Defn. A polynomial *p* is *diagonally-dominant-sum-of-squares (dsos)* if it can be written as:

$$p(x) = \sum_{i} \alpha_{i} m_{i}^{2}(x) + \sum_{i,j} \beta_{ij}^{+} (m_{i}(x) + m_{j}(x))^{2} + \sum_{i,j} \beta_{ij}^{-} (m_{i}(x) - m_{j}(x))^{2}$$

for some monomials m_i, m_j and nonnegative scalars $\alpha_i, \beta_{ij}^+, \beta_{ij}^-$

Defn. A polynomial *p* is *scaled-diagonally-dominant-sum-of-squares* (*sdsos*) if it can be written as:

$$p(x) = \sum_{i} \alpha_{i} m_{i}^{2}(x) + \sum_{i,j} (\hat{\beta}_{ij}^{+} m_{i}(x) + \tilde{\beta}_{ij}^{+} m_{j}(x))^{2} + \sum_{ij} (\hat{\beta}_{ij}^{-} m_{i}(x) - \tilde{\beta}_{ij}^{-} m_{j}(x))^{2},$$

for some monomials m_i, m_j and scalars $\alpha_i, \hat{\beta}_{ij}^+, \tilde{\beta}_{ij}^+, \hat{\beta}_{ij}^-, \tilde{\beta}_{ij}^-$ with $\alpha_i \geq 0$.

Devious: $DSOS_{n,d} \subseteq SDSOS_{n,d} \subseteq SOS_{n,d} \subseteq POS_{n,d}$ 11

r-dsos and r-sdsos

Defn. A polynomial p is *r*-diagonally-dominant-sum-ofsquares (*r*-dsos) if $p \cdot (\sum_i x_i^2)^r$

is dsos.

Defn. A polynomial p is *r*-scaled-diagonally-dominant-sumof-squares (*r*-sdsos) if $p \cdot \left(\sum_{i} x_{i}^{2}\right)^{r}$

is sdsos.

Allows us to develop a *hierarchy* of relaxations...

dd and sdd matrices

DAD is dd.

 $dd \Rightarrow sdd \Rightarrow psd$

Greshgorin's circle theorem

PRINCETON **CONFE** *Thanks to Pablo Parrilo for telling us about sdd matrices. ¹³

Optimization over these sets is an SDP, SOCP, LP !!

Two natural matrix programs: DDP and SDPP

 $\min\langle C, X \rangle$ LP: A(X) = bX diagonal&nonnegative $\min\langle C, X \rangle$ A(X) = b**DDP:** $X \, \mathrm{dd}$ $\min\langle C, X \rangle$ **SDDP:** A(X) = b $X \, \mathrm{sdd}$ $\min\langle C, X \rangle$ **SDP:** A(X) = b $X \succeq 0$

From matrices to polynomials

Thm. A polynomial *p* is *dsos*

$$p = \sum_{i} \alpha_{i} m_{i}^{2} + \sum_{i,j} \beta_{ij}^{+} (m_{i} + m_{j})^{2} + \beta_{ij}^{-} (m_{i} - m_{j})^{2},$$

if and only if
$$p(x) = z^{T}(x)Qz(x)$$
$$Q \quad dd$$

Thm. A polynomial *p* is *sdsos*

$$p = \sum_{i} \alpha_{i} m_{i}^{2} + \sum_{i,j} (\beta_{i}^{+} m_{i} + \gamma_{j}^{+} m_{j})^{2} + (\beta_{i}^{-} m_{i} - \gamma_{j}^{-} m_{j})^{2},$$

 \mathcal{Q}

 $p(x) = z^T(x)Qz(x)$ if and only if sdd

Optimization over r-dsos and r-dsos polynomials

- Can be done by LP and SOCP respectively!
- iSOS: add-on to SPOTIess (package by Megretski, Tobenkin, Permenter MIT)

https://github.com/spot-toolbox/spotless

How well does it do?!

- Our paper shows encouraging experiments from: Control, polynomial optimization, statistics, combinatorial optimization, options pricing, sparse PCA, etc.
- And we'll give converse results

A parametric family

 $P(x) = \frac{1}{2}x_{1}^{4} + \frac{1}{2}x_{2}^{4} + \alpha x_{1}^{3}x_{2} + bx_{1}^{2}x_{2}^{2} + (1 - 2\alpha - 4b)x_{1}x_{2}^{3}$

Converse results

Thm. Any even positive definite form *p* is r-dsos for some *r*.

- Hence proof of positivity can always be found with LP
- Proof follows from a result of Polya (1928) on Hilbert's 17th problem

(Even forms include copositive programming, nonnegative switched systems, etc.)

Thm. For any positive definite form *p*, there exists an integer *r* and a **polynomial** *q* **of degree** *r* such that

q is dsos and pq is dsos.

- Search for q is an LP
- Such a q is a certificate of nonnegativity of p
- Proof follows from a result of Habicht (1940)

Converse results: stability of switched linear systems

Problem:

Given a set of $n \times n$ matrices $M = \{A_1, ..., A_m\}$ When is the system $x_{k+1} = A_{\sigma(k)}x_k$ stable?

Joint spectral radius (JSR) of
$$M = \{A_1, ..., A_m\}$$
:
 $\rho(A_1, ..., A_m) = \lim_{k \to \infty} \max_{\sigma \in \{1, ..., m\}^k} \left| \left| A_{\sigma_k} \dots A_{\sigma_2} A_{\sigma_1} \right| \right|^{1/k}$

Theorem:

Switched linear system is stable $\Leftrightarrow \rho(A_1, \dots, A_m) < 1$

Goal: compute upperbounds on JSR

Converse results: stability of switched linear systems

Link to polynomial nonnegativity: $\rho(A_1, \dots, A_m) < 1$ \Leftrightarrow $\exists a pd polynomial Lyapunov function V(x) such that V(x) - V(A_ix) > 0, \forall x \neq 0.$

Semidefinite relaxation [Parrilo, Jadbabaie]: $\rho(A_1, ..., A_m) < 1$ \Leftrightarrow \exists an sos polynomial Lyapunov function V(x) such that $V(x) - V(A_ix)$ sos.

Converse results: stability of switched linear systems

Theorem (AAA,Hall): For nonnegative $\{A_1, ..., A_m\}$, $\rho(A_1, ..., A_m) < 1 \Leftrightarrow \exists r \in \mathbb{N}$ and a polynomial Lyapunov function V(x) such that $V(x.^2)$ r-dsos and $V(x.^2) - V(A_ix.^2)$ r-dsos. (*)

Proof:

 $(\Leftarrow) (\star) \Rightarrow V(x) \ge 0$ and $V(x) - V(A_i x) \ge 0$ for any $x \ge 0$.

Combined to $A_i \ge 0$, this implies that $x_{k+1} = A_{\sigma(k)}x_k$ is stable for $x_0 \ge 0$. This can be extended to any x_0 by noting that $x_0 = x_0^+ - x_0^-, x_0^+, x_0^- \ge 0$. (\Rightarrow) From theorem of Parrilo-Jadbabie, and using Polya's result as $V(x^2)$ and $V(x^2) - V(A_ix^2)$ are even forms.

Larger-scale applications in control

Stabilizing the inverted N-link pendulum (2N states)

N=6

N=1

Runtime:

2N (# states)	4	6	8	10	12	14	16	18	20	22
DSOS	< 1	0.44	2.04	3.08	9.67	25.1	74.2	200.5	492.0	823.2
SDSOS	< 1	0.72	6.72	7.78	25.9	92.4	189.0	424.74	846.9	1275.6
SOS (SeDuMi)	< 1	3.97	156.9	1697.5	23676.5	8	∞	∞	∞	∞
SOS (MOSEK)	< 1	0.84	16.2	149.1	1526.5	∞	∞	∞	∞	∞

ROA volume ratio:

2N (states)	4	6	8	10	12	
$ ho_{dsos}/ ho_{sos}$	0.38	0.45	0.13	0.12	0.09	
$ ho_{sdsos}/ ho_{sos}$	0.88	0.84	0.81	0.79	0.79	

(w/ Majumdar, Tedrake) 24

Stabilizing ATLAS

• 30 states 14 control inputs Cubic dynamics

Done by SDSOS Optimization

[Majumdar, AAA, Tedrake]

More recent directions...

Move towards real-time algebraic optimization

e.g., barrier certificates[Prajna, Jadbabaie, Pappas]

 $\dot{x} = f(x)$

(w/ A. Majumdar, Stanford)

More recent directions...

Iterative DSOS/SDSOS via

- Column generation
- Cholesky change of basis

(Next talk!)

(w/ S. Dash, IBM, G. Hall, Princeton)

Main messages

Want to know more? aaa.princeton.edu Workshop webpage: aaa.princeton.edu/largesdps

Backup slides...

r-dsos can in fact outperform sos

The Motzkin polynomial:

$$M(x_1, x_2, x_3) = x_1^4 x_2^2 + x_1^2 x_2^4 - 3x_1^2 x_2^2 x_3^2 + x_3^6$$

nonnegative but not sos!

...but it's 2-dsos.

(certificate of nonnegativity using LP)

Another ternary sextic:

$$p(x_1, x_2, x_3) = x_1^4 x_2^2 + x_2^4 x_3^2 + x_3^4 x_1^2 - 3x_1^2 x_2^2 x_3^2$$

not sos, but 1-dsos (hence nonnegative)

Minimizing a form on the sphere $\min_{x \in \mathcal{S}^{n-1}} p(x)$

• degree=4; all coefficients • PC: 3.4 GHz, present – generated randomly 16 Gb RAM

n=10	Lower bound	Run time (secs)	n=15	Lower bound	Run time (secs)	n=20	Lower bound	Run time (secs)
SOS (sedumi)	-1.920	1.01	SOS (sedumi)	-3.263	165.3	SOS (sedumi)	-3.579	5749
SOS (mosek)	-1.920	0.184	SOS (mosek)	-3.263	5.537	SOS (mosek)	-3.579	79.06
sdsos	-5.046	0.152	sdsos	-10.433	0.444	sdsos	-17.333	1.935
dsos	-5.312	0.067	dsos	-10.957	0.370	dsos	-18.015	1.301
BARON	-175.4	0.35	BARON	-1079.9	0.62	BARON	-5287.9	3.69
n=30	Lower bound	Run time (secs)	n=40	Lower bound	Run time (secs)	n=50	Lower bound	Run time (secs)
SOS (sedumi)		∞	SOS (sedumi)		∞	SOS (sedumi)		∞
SOS (mosek)		∞	SOS (mosek)		∞	SOS (mosek)		∞
sdsos	-36.038	9.431	sdsos	-61.248	53.95	sdsos	-93.22	100.5
dsos	-36.850	8.256	dsos	-62.2954	26.02	dsos	-94.25	72.79
BARON	-28546.1							

SOS→SDP

Q. Is it any easier to decide sos? [Lasserre], [Nesterov], [Parrilo]

Yes! Can be reduced to a semidefinite program (SDP)

Thm: A polynomial p(x) of degree **2d** is sos if and only if there exists a matrix Q such that

$$Q \ge 0,$$

 $p(x) = z(x)^T Q z(x),$

where

$$z = [1, x_1, x_2, \dots, x_n, x_1 x_2, \dots, x_n^d]^T$$

Application 1: polynomial optimization

Many applications:

- Combinatorial optimization (including all problems in NP)
- Computation of equilibria in games
- Machine learning (shape constrained regression, topic modeling, etc.)
- The optimal power flow (OPF) problem
- Sensor network localization
- Optimal configurations for formation flying

