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Motivating Problem: Matrix Completion

Task: given a partially observable data matrix X , predict the unobserved
entries

Application to recommender systems, sensor networks, microarray data,
etc.

A popular example is the Netflix challenge: users are rows, movies are
columns, ratings (1 to 5 stars) are entries
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Low-Rank Matrix Completion

Let X ∈ Rm×n be the partially observed data matrix

Ω denotes the entries of X that are observable, |Ω| � m × n

It is natural to presume that the “true” data matrix has low rank
structure (analogous to sparsity in linear regression)

The estimated data matrix Z should have:

Good predictive performance on the unobserved entries

Interpretability via low-rank structure
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Nuclear Norm Regularization for Matrix Completion

Low-Rank Least Squares Problem

Pr : z∗ := min
Z∈Rm×n

1
2

∑
(i,j)∈Ω(Zij − Xij)

2

s.t. rank(Z ) ≤ r

Replace rank constraint with constraint/penalty on the nuclear norm of Z

Nuclear norm is: ‖Z‖N :=
r∑

j=1

σj

where

Z = UDV T

U ∈ Rm×r is orthonormal, V ∈ Rn×r is orthonormal

D = Diag(σ1, . . . , σr ) comprises the non-zero singular values of Z
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Nuclear Norm Regularized Problem

We aspire to solve:

Pr : z∗ := min
Z∈Rm×n

f (Z ) := 1
2

∑
(i,j)∈Ω(Zij − Xij)

2

s.t. rank(Z ) ≤ r

Instead we will solve:

NNδ : f ∗ := min
Z∈Rm×n

f (Z ) := 1
2

∑
(i,j)∈Ω(Zij − Xij)

2

s.t. ‖Z‖N ≤ δ
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Nuclear Norm Regularized Low-Rank Matrix Completion

Relaxation of the “hard” problem is the nuclear norm regularized least
squares problem:

Nuclear Norm Regularized Matrix Completion [Fazel 2002]

NNδ : f ∗ := min
Z∈Rm×n

f (Z ) := 1
2

∑
(i,j)∈Ω(Zij − Xij)

2

s.t. ‖Z‖N ≤ δ

The above is a convex optimization problem

The nuclear norm constraint is intended to induce low-rank solutions

Think `1 norm on the singular values of Z



9

Matrix Completion Frank-Wolfe for Matrix Completion “In-Face” Extended FW Method Computation

Equivalent SDP Problem on Spectrahedron

Instead of working directly with ‖Z‖N ≤ δ, perhaps work with
spectrahedral representation:

‖Z‖N ≤ δ iff there exists W ,Y for which


A :=

[
W Z
ZT Y

]
� 0

trace(A) ≤ 2δ

Solve the equivalent problem on spectrahedron:

Sδ : f ∗ := min
Z ,W ,Y

f (Z ) := 1
2

∑
(i,j)∈Ω(Zij − Xij)

2

s.t.

[
W Z
ZT Y

]
� 0

trace(W ) + trace(Y ) ≤ 2δ
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Nuclear Norm Regularized Low-Rank Matrix Completion,
cont.

Nuclear Norm Regularized Matrix Completion [Fazel 2002]

NNδ : f ∗ := min
Z∈Rm×n

f (Z ) := 1
2

∑
(i,j)∈Ω(Zij − Xij)

2

s.t. ‖Z‖N ≤ δ

Extensive work studying data generating mechanisms that ensure that
optimal solutions of NNδ have low rank (e.g. [Candes and Recht 2009],
[Candes and Tao 2010], [Recht et al. 2010], . . . )

It is imperative that the algorithm for NNδ reliably delivers solutions with
good predictive performance and low rank after a reasonable amount of
time
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NNδ Alignment with Frank-Wolfe Algorithm

NNδ : f ∗ := min
Z∈Rm×n

f (Z ) := 1
2

∑
(i,j)∈Ω(Zij − Xij)

2

s.t. ‖Z‖N ≤ δ

NNδ aligns well for computing solutions using Frank-Wolfe algorithm:

∇f (Z ) = PΩ(Z − X ) := (Z − X )Ω is viable to compute

the Frank-Wolfe method needs to solve a
linear optimization subproblem at each iteration of the form:

Z̃ ← arg min
‖Z‖N≤δ

{C • Z}

where C ∈ Rm×n and C • Z := trace(CTZ )

The subproblem solution is straightforward:

compute largest singular value σ1 of C with associated left and
right normalized eigenvectors u1, v1

Z̃ ← −δu1(v1)T
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Frank-Wolfe Method

Problem of interest is:

CP : f ∗ := min
x

f (x)

s.t. x ∈ S

S ⊂ Rn is compact and convex

f (·) is convex on S

let x∗ denote any optimal solution of CP

∇f (·) is Lipschitz on S : ‖∇f (x)−∇f (y)‖∗ ≤ L‖s − y‖ for all
x , y ∈ S

it is “easy” to do linear optimization on S for any c :

x̃ ← arg min
x∈S

{cT x}
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Frank-Wolfe Method, cont.

CP : f ∗ := min
x

f (x)

s.t. x ∈ S

At iteration k of the Frank-Wolfe method:

rf(xk)
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Frank-Wolfe Method, cont.

At iteration k of the Frank-Wolfe method:

rf(xk)

Set x̃k ← arg min
x∈S
{f (xk) +∇f (xk)T (x − xk)}
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Frank-Wolfe Method, cont.

At iteration k of the Frank-Wolfe method:

xk+1

Set xk+1 ← xk + ᾱk(x̃k − xk), where ᾱk ∈ [0, 1]
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Frank-Wolfe Method, cont.

CP : f ∗ := min
x

f (x)

s.t. x ∈ S

Basic Frank-Wolfe method for minimizing f (x) on S

Initialize at x0 ∈ S , (optional) initial lower bound B−1 ≤ f ∗, k ← 0 .

At iteration k :

1 Compute ∇f (xk) .

2 Compute x̃k ← arg min
x∈S
{∇f (xk)T x} .

3 Update lower bound: Bk ← max{Bk−1, f (xk) +∇f (xk)T (x̃k − xk)}
4 Set xk+1 ← xk + ᾱk(x̃k − xk), where ᾱk ∈ [0, 1] .
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Some Step-size Rules/Strategies

“Recent standard”: ᾱk = 2
k+2

Exact line-search: ᾱk = arg minα∈[0,1]{f (xk + α(x̃k − xk))}

QA (Quadratic approximation) step-size:

ᾱk = min

{
1,
−∇f (xk)T (x̃k − xk)

L‖x̃k − xk‖2

}
Dynamic strategy: determined by some history of optimality
bounds, see [FG]

Simple averaging: ᾱk = 1
k+1

Constant step-size: ᾱk = ᾱ for some given ᾱ ∈ [0, 1]



19

Matrix Completion Frank-Wolfe for Matrix Completion “In-Face” Extended FW Method Computation

Computational Guarantee for Frank-Wolfe

A Computational Guarantee for the Frank-Wolfe algorithm

If the step-size sequence {ᾱk} is chosen by exact line-search or a certain
quadratic approximation (QA) line-search rule, then for all k ≥ 1 it holds
that:

f (xk)− f ∗ ≤ f (xk)− Bk ≤
1

1
f (x0)−B0

+ k
2C

<
2C

k

where C = L · diam(S)2.

It will be useful to understand this guarantee as arising from:

1

f (xi+1)− Bi+1
≥ 1

f (xi )− Bi
+

1

2C
for i = 0, 1, . . .
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Diameter and Lipschitz Gradient

Let ‖ · ‖ be a prescribed norm on Rn

Dual norm is ‖s‖∗ := max‖x‖≤1{sT x}

B(x , ρ) := {y : ‖y − x‖ ≤ ρ}

Diam(S) := maxx,y∈S{‖x − y‖}

Let L be the Lipschitz constant of ∇f (·) on S :

‖∇f (x)−∇f (y)‖∗ ≤ L‖x − y‖ for all x , y ∈ S
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Renewed Interest in Frank-Wolfe Algorithm

Renewed interest in Frank-Wolfe algorithm due to:

Relevance of applications

Regression
Boosting/classification
Matrix completion
Image construction
· · ·

Requirements for only moderately high accuracy solutions

Necessity of simple methods for huge-scale problems

Structural implications (sparsity, low-rank) induced by the algorithm
itself
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A Linear Convergence Result

f (·) is u-strongly convex on S if there exists u > 0 for which:

f (y) ≥ f (x) +∇f (x)T (y − x) +
u

2
‖y − x‖2 for all x , y ∈ S

Sublinear and Linear Convergence under Interior Solutions and Strong
Convexity ∼[W,GM]

Suppose the step-size sequence {ᾱk} is chosen using the QA rule or by
line-search. Then for all k ≥ 1 it holds that:

f (xk)− f ∗ ≤ min

{
2L(Diam(S))2

k
, (f (x0)− f ∗)

[
1−

(
u

L

ρ2

(Diam(S))2

)]k}

where ρ = dist(x∗, ∂S) .
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Frank-Wolfe For Low-Rank Matrix Completion

NNδ : f ∗ := min
Z∈Rm×n

f (Z ) := 1
2

∑
(i,j)∈Ω(Zij − Xij)

2

s.t. ‖Z‖N ≤ δ

We focus on the Frank-Wolfe method and its extensions

A key driver of our work is the favorable low-rank structural
properties of Frank-Wolfe

Frank-Wolfe has been directly (and indirectly) applied to NNδ by [Jaggi
and Sulovsk 2010], [Harchaoui, Juditsky, and Nemirovski 2012], [Mu et
al. 2014], and [Rao, Shah, and Wright 2014]
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Frank-Wolfe For Low-Rank Matrix Completion, cont.

NNδ : f ∗ := min
Z∈Rm×n

f (Z ) := 1
2

∑
(i,j)∈Ω(Zij − Xij)

2

s.t. ‖Z‖N ≤ δ

As applied to NNδ, at iteration k Frank-Wolfe computes

Z̃ k ← arg min
‖Z‖N≤δ

{
∇f (Z k) • Z

}
and updates:

Z k+1 ← (1− ᾱk)Z k + ᾱk Z̃
k for some ᾱk ∈ [0, 1]

Note that Z̃ k ← −δu1(v1)T is a rank-one matrix where u1, v1 are the
singular vectors associated with the largest singular value of ∇f (Z k)
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Properties of Frank-Wolfe Applied to NNδ

At each iteration, Frank-Wolfe forms Z k+1 by adding a rank-one matrix
Z̃ k to a scaling of the current iterate Z k :

Z k+1 ← (1− ᾱk)Z k + ᾱk Z̃
k = (1− ᾱk)Z k − ᾱkδu1(v1)T

Assuming that rank(Z 0) = 1, this implies that rank(Z k) ≤ k + 1

Combined with the optimality guarantee for Frank-Wolfe, we have a nice
tradeoff between data-fidelity and low-rank structure:

f (Z k)− f ∗ ≤ 8δ2

k + 3
and rank(Z k) ≤ k + 1

What happens in practice?
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Practical Behavior of Frank-Wolfe Applied to NNδ, cont.

Instance with m = 2000, n = 2500 and rank(Z∗) = 37

Frank-Wolfe Applied to a Typical Instance of NNδ: 37 Iterations

rank(Z k ) vs. k Log10

(
f (Zk )−f ∗

f ∗

)
vs. k
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Practical Behavior of Frank-Wolfe Applied to NNδ, cont.

Instance with m = 2000, n = 2500 and rank(Z∗) = 37

Frank-Wolfe Applied to a Typical Instance of NNδ: ∼ 450 Iterations

rank(Z k ) vs. k Log10

(
f (Zk )−f ∗

f ∗

)
vs. k
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Practical Behavior of Frank-Wolfe Applied to NNδ, cont.

Instance with m = 2000, n = 2500 and rank(Z∗) = 37

Frank-Wolfe Applied to a Typical Instance of NNδ: ∼ 2000 Iterations

rank(Z k ) vs. k Log10

(
f (Zk )−f ∗

f ∗

)
vs. k
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Practical Behavior of Frank-Wolfe Applied to NNδ

Theoretical bounds for Frank-Wolfe:

f (Z k)− f ∗ ≤ 8δ2

k + 3
and rank(Z k) ≤ k + 1

We propose an extension of Frank-Wolfe that:

In theory has computational guarantees for f (Z k)− f ∗ and
rank(Z k) that are at least as good as (and sometimes better than)
Frank-Wolfe

In practice is able to efficiently deliver a solution with the correct
optimal rank and better training error than Frank-Wolfe
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Preview of In-Face Extended Frank-Wolfe Behavior

Preview of IF Extended FW (versus FW)

rank(Z k ) vs. Time Log10

(
f (Zk )−f ∗

f ∗

)
vs. Time
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For this problem, rank(Z∗) = 37 (m = 2000, n = 2500)
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In-Face Extended Frank-Wolfe Overview

We develop a general methodological approach for preserving structure
(low rank) while making objective function improvements based on
“in-face directions”

For the matrix completion problem NNδ, in-face directions preserve
low-rank solutions

This is good since Z∗ should (hopefully) be low-rank

Working with low-rank matrices also yields computational savings at
all intermediate iterations
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In-Face Directions

Let FS(xk) denote the minimal face of S that contains xk
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In-Face Directions, cont.

An in-face step moves in any “reasonably good” direction that remains in
FS(xk)

The in-face direction should be relatively easy to compute

“In-face” step 

Regular 

step 
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In-Face Directions, cont.

Main examples of “in-face” directions:

Wolfe’s “away step” direction

Fully optimizing f (·) over FS(xk)

“In-face” step 

Regular 

step 
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What are the Faces of the Nuclear Norm Ball?

The nuclear norm ball of radius δ:

B(0, δ) := {Z ∈ Rm×n : ‖Z‖N ≤ δ}

Theorem [So 1990]: Minimal Faces of the Nuclear Norm Ball

Let Z ∈ ∂B(0, δ) be given, and consider the thin SVD of Z = UDV T .
Then the minimal face of ∂B(0, δ) containing Z is:

F(Z ) = {UMV T : M ∈ Sr×r , M � 0 , trace(M) = δ} ,

and dim(F(Z )) = r(r + 1)/2− 1 .

Low-dimensional faces of the nuclear norm ball correspond to
low-rank matrices on its boundary.

All matrices lying on F(Z ) have rank at most r

F(Z ) is a linear transformation of a standard spectrahedron
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In-Face Extended Frank-Wolfe Method

In-face directions have two important properties:

1 They keep the next iterate within FS(xk)

2 They should be relatively easy to compute

Outline of each iteration of the In-Face Extended Frank-Wolfe Method:

1 Compute the in-face direction

2 Decide whether or not to accept an in-face step (partial or full), by
checking its objective function value progress

3 If we reject an in-face step, compute a regular FW step
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In-Face Steps

Three points to choose from:

xBk : full step to the relative boundary of FS(xk)

xAk : partial step that remains in the relative interior of FS(xk)

xRk : the “regular” Frank-Wolfe step

“In-face” step 

Regular 

step 
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Decision Rule for In-Face Extended Frank-Wolfe Method

Recall the following useful property for regular FW with line-search or
quadratic approximation line-search step-sizes:

1

f (xi+1)− Bi+1
≥ 1

f (xi )− Bi
+

1

2C

Note that these “reciprocal gaps” are available at every iteration

We will use these reciprocal gaps to measure the progress made by
in-face directions
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Decision Rule for In-Face Extended Frank-Wolfe Method,
cont.

Decision Rule for In-Face Extended Frank-Wolfe Method

Set γ2 ≥ γ1 ≥ 0 (think γ2 = 1, γ1 = 0.3)

At iteration k :

1 Decide which of xAk , xBk , xRk to accept as next iterate:

1 (Go to a lower-dimensional face.) Set xk+1 ← xBk if

1

f (xBk )− Bk

≥
1

f (xk )− Bk
+
γ1

2C
.

2 (Stay in current face.) Else, set xk+1 ← xAk if

1

f (xAk )− Bk

≥
1

f (xk )− Bk
+
γ2

2C
.

3 (Do regular FW step and update lower bound.) Else, set xk+1 ← xRk .



39

Matrix Completion Frank-Wolfe for Matrix Completion “In-Face” Extended FW Method Computation

Computational Guarantee for Extended FW Method

In the first k iterations, let:

NB
k = number of steps to the boundary of the minimal face

NA
k = number of steps to the interior of the minimal face

NR
k = number of regular Frank-Wolfe steps

k = NB
k + NA

k + NR
k

Computational Guarantee for Extended Frank-Wolfe Method

Theorem: Suppose that the step-sizes are determined by exact
line-search or QA line-search rule. After k iterations of the Extended
Frank-Wolfe method it holds that:

f (xk)− f ∗ <
2LD2

γ1NB
k + γ2NA

k + NR
k

,

where D := diam(S).



40

Matrix Completion Frank-Wolfe for Matrix Completion “In-Face” Extended FW Method Computation

In-Face Extended Frank-Wolfe Summary

In-Face Extended Frank-Wolfe method intelligently combines “in-face
directions” with “regular Frank-Wolfe directions”

Computational guarantees improve upon regular Frank-Wolfe

Objective function value guarantee is still O(1/k)

Guarantee bound on the rank of the iterates is stronger:

rank(Z k) ≤ k + 1− 2NB
k − NA

k .
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Outline of Topics

Motivating Application: Low-rank Matrix Completion

Review of Frank-Wolfe Method

Frank-Wolfe for Low-rank Matrix Completion

“In-Face Step” Extension of Frank-Wolfe Method

Computational Experiments and Results



42

Matrix Completion Frank-Wolfe for Matrix Completion “In-Face” Extended FW Method Computation

Computational Experiments and Results

Here, we consider three versions of the In-Face Extended Frank-Wolfe
method (IF-. . .):

IF-(0, ∞) – uses the away-step strategy and sets γ1 = 0 and
γ2 = +∞
IF-Optimization – based on using the in-face optimization strategy
(does not require setting γ1, γ2)

IF-Rank-Strategy – uses the away-step strategy and adjusts the
values of γ1, γ2 based on rank(Z k)

We compare against regular Frank-Wolfe and two other away-step
modified Frank-Wolfe algorithms
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Example with m = 2000, n = 2500, 1% observed entries,
and δ = 8.01

Frank-Wolfe

rank(Z k ) vs. Time Log10
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Example with m = 2000, n = 2500, 1% observed entries,
and δ = 8.01

IF-(0, ∞)

rank(Z k ) vs. Time Log10
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Example with m = 2000, n = 2500, 1% observed entries,
and δ = 8.01

IF-Optimization
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Example with m = 2000, n = 2500, 1% observed entries,
and δ = 8.01

IF-Rank-Strategy
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Small-Scale Examples (results averaged over 25 samples)

We generated artificial examples via the model X = low-rank + noise,
controlling for:

SNR – signal-to-noise ratio

ρ – fraction of observed entries

r – true underlying rank

Small-Scale Examples (25 samples per example)

In-Face Extended FW (IF-. . .) Away Steps
Regular γ1, γ2 In-Face Rank Fully

Data Metric FW 1,1 0,1 0,∞ Opt. Strategy Natural Atomic Corrective FW CoGEnT

m = 200, n = 400, ρ = 0.10 Time (secs) 29.51 22.86 23.07 7.89 2.34 2.30 14.71 6.21 8.76 20.85
r = 10,SNR = 5, δavg = 3.75 Final Rank 118.68 16.36 16.36 16.44 29.32 28.20 16.72 119.00 92.84 79.96

Maximum Rank 146.48 19.04 17.28 17.56 32.08 145.20 18.04 121.96 991.60* **

m = 200, n = 400, ρ = 0.20 Time (secs) 115.75 153.42 150.89 27.60 20.62 3.48 50.52 24.52 196.29 65.88
r = 15,SNR = 4, δavg = 3.82 Final Rank 96.44 16.16 16.12 16.52 19.88 21.24 16.68 106.60 107.04 93.40

Maximum Rank 156.52 26.72 17.96 17.80 31.48 160.36 18.84 106.80 1812.92* **

m = 200, n = 400, ρ = 0.30 Time (secs) 171.23 198.96 202.01 35.93 31.67 5.04 66.22 67.72 >381.91 93.93
r = 20,SNR = 3, δavg = 3.63 Final Rank 91.80 20.08 20.08 20.60 21.72 25.56 20.44 94.64 113.84 104.60

Maximum Rank 162.24 25.80 22.04 21.96 33.36 168.72 22.16 95.08 1609.40* **
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Small-Scale Examples (results averaged over 25 samples)

In-Face Extended FW (IF-. . .)
γ1, γ2 In-Face Rank

Data Methods 0,∞ Opt. Strat.

m = 200, n = 400, ρ = 0.10 Time (secs) 7.89 2.34 2.30
r = 10,SNR = 5, δavg = 3.75 Final Rank 16.44 29.32 28.20

Maximum Rank 17.56 32.08 145.20

m = 200, n = 400, ρ = 0.20 Time (secs) 27.60 20.62 3.48
r = 15,SNR = 4, δavg = 3.82 Final Rank 16.52 19.88 21.24

Maximum Rank 17.80 31.48 160.36

m = 200, n = 400, ρ = 0.30 Time (secs) 35.93 31.67 5.04
r = 20,SNR = 3, δavg = 3.63 Final Rank 20.60 21.72 25.56

Maximum Rank 21.96 33.36 168.72
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Small-Scale Examples (results averaged over 25 samples)

In-Face Extended FW (IF-. . .)
γ1, γ2 In-Face Rank

Data Methods 0,∞ Opt. Strat.

m = 200, n = 400, ρ = 0.10 Time (secs) 7.89 2.34 2.30
r = 10,SNR = 5, δavg = 3.75 Final Rank 16.44 29.32 28.20

Maximum Rank 17.56 32.08 145.20

m = 200, n = 400, ρ = 0.20 Time (secs) 27.60 20.62 3.48
r = 15,SNR = 4, δavg = 3.82 Final Rank 16.52 19.88 21.24

Maximum Rank 17.80 31.48 160.36

m = 200, n = 400, ρ = 0.30 Time (secs) 35.93 31.67 5.04
r = 20,SNR = 3, δavg = 3.63 Final Rank 20.60 21.72 25.56

Maximum Rank 21.96 33.36 168.72

IF-(0, ∞) reliably always delivers a solution with the lowest rank
reasonably quickly

IF-Rank-Strategy delivers the best run times – beating existing
methods by a factor of 10 or more

IF-Rank-Strategy sometimes fails on large problems –
IF-Optimization is more robust
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MovieLens10M Dataset, m = 69878, n = 10677,
|Ω| = 107 (1.3% sparsity), and δ = 2.59

MovieLens10M Dataset

Frank-Wolfe IF-(0, ∞)
Relative Optimality Gap Time (mins) Rank Time (mins) Rank

10−1.5 7.38 103 7.01 44
10−2 28.69 315 14.73 79

10−2.25 69.53 461 22.80 107
10−2.5 178.54 454 42.24 138

For this large-scale instance, we test IF-(0, ∞), which is most promising
at delivering a low-rank solution, and benchmark against Frank-Wolfe
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Summary

Despite guarantees for f (Z k)− f ∗ and rank(Z k), the Frank-Wolfe
method can fail at delivering a low-rank solution within a reasonable
amount of time.

In-face directions are a general methodological approach for
preserving structure (low rank) while making objective function
improvements

Computational guarantees for In-Face Extended FW Method in
terms of optimality gaps

In the case of matrix completion, In-Face Extended FW

has computational guarantees in terms of improved bounds on
the rank of the iterates
is able to efficiently deliver a low-rank solution reasonably
quickly in practice

Paper includes full computational evaluation on simulated and real
data instances
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Paper:

“An Extended Frank-Wolfe Method with ‘In-Face’ Directions, and its
Application to Low-Rank Matrix Completion”

Available at http://arxiv.org/abs/1511.02204

http://arxiv.org/abs/1511.02204
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Back-up: Medium-Large Scale Examples

Medium-Large Scale Examples

In-Face Extended FW (IF-. . .) Away Steps
Regular γ1, γ2 In-Face Rank Fully

Data Metric FW 1,1 0,1 0,∞ Opt. Strategy Natural Atomic Corrective FW

m = 500, n = 1000, ρ = 0.25 Time (secs) 137.62 51.95 53.21 18.20 4.41 6.37 31.55 157.31 39.81
r = 15,SNR = 2, δ = 3.57 Final Rank (Max Rank) 53 (126) 16 (17) 15 (17) 16 (17) 17 (19) 121 (136) 15 (17) 50 (52) 78 (984*)

m = 500, n = 1000, ρ = 0.25 Time (secs) 256.08 110.37 110.77 46.07 6.76 7.91 73.95 322.24 227.50
r = 15,SNR = 10, δ = 4.11 Final Rank (Max Rank) 41 (128) 15 (17) 15 (17) 16 (17) 15 (18) 18 (140) 16 (17) 48 (48) 81 (971*)

m = 1500, n = 2000, ρ = 0.05 Time (secs) 124.76 108.97 113.58 24.75 11.09 12.71 40.23 60.83 48.76
r = 15,SNR = 2, δ = 6.01 Final Rank (Max Rank) 169 (210) 15 (18) 16 (17) 16 (16) 31 (44) 206 (206) 16 (16) 128 (138) 106 (736*)

m = 1500, n = 2000, ρ = 0.05 Time (secs) >800.01 518.72 496.08 166.01 21.90 31.41 309.58 407.22 >801.89
r = 15,SNR = 10, δ = 8.94 Final Rank (Max Rank) 119 (266) 15 (17) 15 (17) 15 (17) 15 (23) 15 (256) 15 (18) 172 (185) 125 (790*)

m = 2000, n = 2500, ρ = 0.01 Time (secs) 105.44 45.39 36.47 23.15 20.07 47.83 30.07 26.92 39.65
r = 10,SNR = 4, δ = 7.92 Final Rank (Max Rank) 436 (436) 37 (38) 35 (38) 37 (38) 67 (107) 430 (430) 37 (39) 245 (276) 238 (502*)

m = 2000, n = 2500, ρ = 0.05 Time (secs) 99.84 51.90 48.26 18.79 6.92 6.70 30.37 89.09 55.11
r = 10,SNR = 2, δ = 5.82 Final Rank (Max Rank) 68 (98) 10 (11) 10 (11) 11 (11) 13 (15) 94 (94) 10 (11) 52 (52) 62 (370*)

m = 5000, n = 5000, ρ = 0.01 Time (secs) 251.33 168.66 172.21 64.56 26.25 17.70 96.79 90.41 350.88
r = 10,SNR = 4, δ = 12.19 Final Rank (Max Rank) 161 (162) 10 (24) 11 (18) 11 (20) 22 (34) 20 (112) 10 (16) 181 (182) 92 (616*)

m = 5000, n = 7500, ρ = 0.01 Time (secs) 272.19 107.19 116.58 52.65 54.02 145.13 107.60 94.96 209.86
r = 10,SNR = 4, δ = 12.19 Final Rank (Max Rank) 483 (483) 33 (43) 34 (36) 32 (37) 63 (123) 476 (476) 36 (42) 229 (298) 204 (331*)
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