rank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000

1

An Extended Frank-Wolfe Method, with Application to Low-Rank Matrix Completion

Robert M. Freund, MIT

joint with Paul Grigas (UC Berkeley) and Rahul Mazumder (MIT)

CDC, December 2016

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Outline of Topics

- Motivating Application: Low-rank Matrix Completion
- Review of Frank-Wolfe Method
- Frank-Wolfe for Low-rank Matrix Completion
- "In-Face Step" Extension of Frank-Wolfe Method
- Computational Experiments and Results

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Outline of Topics

- Motivating Application: Low-rank Matrix Completion
- Review of Frank-Wolfe Method
- Frank-Wolfe for Low-rank Matrix Completion
- "In-Face Step" Extension of Frank-Wolfe Method
- Computational Experiments and Results

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Motivating Problem: Matrix Completion

Task: given a partially observable data matrix X, predict the unobserved entries

Application to recommender systems, sensor networks, microarray data, etc.

A popular example is the Netflix challenge: users are rows, movies are columns, ratings (1 to 5 stars) are entries

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000

Computation 00000000

Low-Rank Matrix Completion

Let $X \in \mathbb{R}^{m \times n}$ be the partially observed <u>data</u> matrix

 Ω denotes the entries of X that are observable, $|\Omega| \ll m \times n$

It is natural to presume that the "true" data matrix has low rank structure (analogous to sparsity in linear regression)

The estimated data matrix Z should have:

- Good predictive performance on the unobserved entries
- Interpretability via low-rank structure

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Nuclear Norm Regularization for Matrix Completion

Low-Rank Least Squares Problem

$$egin{array}{rcl} P_r: & z^* & := & \min_{Z\in \mathbb{R}^{m imes n}} & rac{1}{2}\sum_{(i,j)\in \Omega}(Z_{ij}-X_{ij})^2 \ & ext{ s.t. } & ext{rank}(Z)\leq r \end{array}$$

Replace rank constraint with constraint/penalty on the <u>nuclear norm</u> of Z

Nuclear norm is:
$$||Z||_N := \sum_{j=1}^r \sigma_j$$

where

- $Z = UDV^T$
- $U \in \mathbb{R}^{m \times r}$ is orthonormal, $V \in \mathbb{R}^{n \times r}$ is orthonormal
- $D = \text{Diag}(\sigma_1, \ldots, \sigma_r)$ comprises the non-zero singular values of Z

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Nuclear Norm Regularized Problem

We aspire to solve:

$$P_r: z^* := \min_{Z \in \mathbb{R}^{m \times n}} f(Z) := \frac{1}{2} \sum_{(i,j) \in \Omega} (Z_{ij} - X_{ij})^2$$

s.t. rank $(Z) \le r$

Instead we will solve:

$$\begin{split} \mathsf{NN}_{\delta} : \quad f^* & := \quad \min_{Z \in \mathbb{R}^{m \times n}} \quad f(Z) := \frac{1}{2} \sum_{(i,j) \in \Omega} (Z_{ij} - X_{ij})^2 \\ \text{s.t.} \quad \|Z\|_{N} \leq \delta \end{split}$$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Nuclear Norm Regularized Low-Rank Matrix Completion

Relaxation of the "hard" problem is the nuclear norm regularized least squares problem:

Nuclear Norm Regularized Matrix Completion [Fazel 2002] $NN_{\delta}: f^* := \min_{Z \in \mathbb{R}^{m \times n}} f(Z) := \frac{1}{2} \sum_{(i,j) \in \Omega} (Z_{ij} - X_{ij})^2$ s.t. $\|Z\|_N \leq \delta$

The above is a convex optimization problem

The nuclear norm constraint is intended to induce low-rank solutions

• Think ℓ_1 norm on the singular values of Z

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Equivalent SDP Problem on Spectrahedron

Instead of working directly with $||Z||_N \leq \delta$, perhaps work with spectrahedral representation:

$$\|Z\|_{N} \leq \delta \quad \text{iff there exists } W, Y \text{ for which } \begin{cases} A := \begin{bmatrix} W & Z \\ Z^{T} & Y \end{bmatrix} \succeq 0 \\ \text{trace}(A) \leq 2\delta \end{cases}$$

Solve the equivalent problem on spectrahedron:

$$S_{\delta}: f^{*} := \min_{Z,W,Y} f(Z) := \frac{1}{2} \sum_{(i,j) \in \Omega} (Z_{ij} - X_{ij})^{2}$$

s.t.
$$\begin{bmatrix} W & Z \\ Z^{T} & Y \end{bmatrix} \succeq 0$$

 $\mathsf{trace}(W) + \mathsf{trace}(Y) \le 2\delta$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 0000000

Nuclear Norm Regularized Low-Rank Matrix Completion, cont.

$$\begin{split} \mathsf{NN}_{\delta} : \quad f^* \quad := \quad \min_{Z \in \mathbb{R}^{m \times n}} \quad f(Z) := \frac{1}{2} \sum_{(i,j) \in \Omega} (Z_{ij} - X_{ij})^2 \\ \text{s.t.} \quad \|Z\|_{N} \leq \delta \end{split}$$

Extensive work studying data generating mechanisms that ensure that optimal solutions of NN_{δ} have low rank (e.g. [Candes and Recht 2009], [Candes and Tao 2010], [Recht et al. 2010], ...)

It is imperative that the algorithm for NN_{δ} reliably delivers solutions with good predictive performance and low rank after a reasonable amount of time

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

NN_{δ} Alignment with Frank-Wolfe Algorithm

$$NN_{\delta}: f^* := \min_{Z \in \mathbb{R}^{m \times n}} f(Z) := \frac{1}{2} \sum_{(i,j) \in \Omega} (Z_{ij} - X_{ij})^2$$

s.t. $\|Z\|_N \le \delta$

 NN_{δ} aligns well for computing solutions using Frank-Wolfe algorithm:

- $\nabla f(Z) = P_{\Omega}(Z X) := (Z X)_{\Omega}$ is viable to compute
- the Frank-Wolfe method needs to solve a linear optimization subproblem at each iteration of the form:

$$\tilde{Z} \leftarrow \arg\min_{\|Z\|_N \leq \delta} \{C \bullet Z\}$$

where $C \in \mathbb{R}^{m \times n}$ and $C \bullet Z := \text{trace}(C^T Z)$

- The subproblem solution is straightforward:
 - compute largest singular value σ_1 of C with associated left and right normalized eigenvectors u_1 , v_1

•
$$\tilde{Z} \leftarrow -\delta u_1(v_1)^7$$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000

Computation 00000000

Outline of Topics

- Motivating Application: Low-rank Matrix Completion
- Review of Frank-Wolfe Method
- Frank-Wolfe for Low-rank Matrix Completion
- "In-Face Step" Extension of Frank-Wolfe Method
- Computational Experiments and Results

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000

Computation 00000000

Frank-Wolfe Method

Problem of interest is:

$$\begin{array}{rcl} \mathsf{CP}: & f^* & := & \min_{x} & f(x) \\ & & \mathsf{s.t.} & x \in S \end{array}$$

- $S \subset \mathbb{R}^n$ is compact and convex
- $f(\cdot)$ is convex on S
- let x^* denote any optimal solution of *CP*
- $\nabla f(\cdot)$ is Lipschitz on $S: \|\nabla f(x) \nabla f(y)\|_* \le L \|s y\|$ for all $x, y \in S$
- it is "easy" to do linear optimization on S for any c :

$$\tilde{x} \leftarrow \arg\min_{x \in S} \{c^T x\}$$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000

Computation

Frank-Wolfe Method, cont.

$$\begin{array}{rcl} \mathsf{CP}: & f^* & := & \min_{x} & f(x) \\ & & \mathsf{s.t.} & x \in S \end{array}$$

At iteration k of the Frank-Wolfe method:

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000

Computation 00000000

Frank-Wolfe Method, cont.

At iteration k of the Frank-Wolfe method:

Set $\tilde{x}_k \leftarrow \arg\min_{x \in S} \{f(x_k) + \nabla f(x_k)^T (x - x_k)\}$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000

Computation 00000000

Frank-Wolfe Method, cont.

At iteration k of the Frank-Wolfe method:

Set $x_{k+1} \leftarrow x_k + \bar{\alpha}_k (\tilde{x}_k - x_k)$, where $\bar{\alpha}_k \in [0, 1]$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000 Computation 00000000

Frank-Wolfe Method, cont.

$$\begin{array}{rcl} \mathsf{CP}: & f^* & := & \min_{x} & f(x) \\ & & \mathsf{s.t.} & x \in S \end{array}$$

Basic Frank-Wolfe method for minimizing f(x) on S

Initialize at $x_0 \in S$, (optional) initial lower bound $B_{-1} \leq f^*$, $k \leftarrow 0$.

At iteration k:

- Compute $\nabla f(x_k)$.
- $O Compute \ \tilde{x}_k \leftarrow \arg\min_{x \in S} \{ \nabla f(x_k)^T x \} \ .$
- **3** Update lower bound: $B_k \leftarrow \max\{B_{k-1}, f(x_k) + \nabla f(x_k)^T (\tilde{x}_k x_k)\}$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000

Computation 00000000

Some Step-size Rules/Strategies

• "Recent standard":
$$\bar{\alpha}_k = \frac{2}{k+2}$$

• Exact line-search:
$$\bar{\alpha}_k = \arg \min_{\alpha \in [0,1]} \{ f(x_k + \alpha(\tilde{x}_k - x_k)) \}$$

• QA (Quadratic approximation) step-size:

$$\bar{\alpha}_k = \min\left\{1, \frac{-\nabla f(x_k)^T(\tilde{x}_k - x_k)}{L\|\tilde{x}_k - x_k\|^2}\right\}$$

• Dynamic strategy: determined by some history of optimality bounds, see [FG]

• Simple averaging:
$$\bar{\alpha}_k = \frac{1}{k+1}$$

• Constant step-size: $\bar{\alpha}_k = \bar{\alpha}$ for some given $\bar{\alpha} \in [0, 1]$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Computational Guarantee for Frank-Wolfe

A Computational Guarantee for the Frank-Wolfe algorithm

If the step-size sequence $\{\bar{\alpha}_k\}$ is chosen by exact line-search or a certain quadratic approximation (QA) line-search rule, then for all $k \ge 1$ it holds that:

$$f(x_k) - f^* \leq f(x_k) - B_k \leq \frac{1}{\frac{1}{f(x_0) - B_0} + \frac{k}{2C}} < \frac{2C}{k}$$

where $C = L \cdot \operatorname{diam}(S)^2$.

It will be useful to understand this guarantee as arising from:

$$\frac{1}{f(x_{i+1}) - B_{i+1}} \geq \frac{1}{f(x_i) - B_i} + \frac{1}{2C} \quad \text{for} \quad i = 0, 1, \dots$$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Diameter and Lipschitz Gradient

Let $\|\cdot\|$ be a prescribed norm on \mathbb{R}^n

Dual norm is $||s||_* := \max_{||x|| \le 1} \{s^T x\}$

$$B(x, \rho) := \{y : ||y - x|| \le \rho\}$$

$$\mathsf{Diam}(S) := \max_{x,y \in S} \{ \|x - y\| \}$$

Let *L* be the Lipschitz constant of $\nabla f(\cdot)$ on *S*:

$$\|
abla f(x) -
abla f(y)\|_* \leq L \|x - y\| ext{ for all } x, y \in S$$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Renewed Interest in Frank-Wolfe Algorithm

Renewed interest in Frank-Wolfe algorithm due to:

- Relevance of applications
 - Regression
 - Boosting/classification
 - Matrix completion
 - Image construction
 - • •
- Requirements for only moderately high accuracy solutions
- Necessity of simple methods for huge-scale problems
- Structural implications (sparsity, low-rank) induced by the algorithm itself

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000

Computation 00000000

A Linear Convergence Result

 $f(\cdot)$ is *u*-strongly convex on *S* if there exists u > 0 for which:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{u}{2} \|y - x\|^2$$
 for all $x, y \in S$

Sublinear and Linear Convergence under Interior Solutions and Strong Convexity $\sim\![W,GM]$

Suppose the step-size sequence $\{\bar{\alpha}_k\}$ is chosen using the QA rule or by line-search. Then for all $k \ge 1$ it holds that:

$$f(x^{k}) - f^{*} \leq \min\left\{\frac{2L(\mathsf{Diam}(S))^{2}}{k}, (f(x^{0}) - f^{*})\left[1 - \left(\frac{u}{L}\frac{\rho^{2}}{(\mathsf{Diam}(S))^{2}}\right)\right]^{k}\right\}$$

where $\rho = \mathsf{dist}(x^{*}, \partial S)$.

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Frank-Wolfe For Low-Rank Matrix Completion

$$\begin{split} NN_{\delta} : f^* &:= \min_{Z \in \mathbb{R}^{m \times n}} f(Z) := \frac{1}{2} \sum_{(i,j) \in \Omega} (Z_{ij} - X_{ij})^2 \\ \text{s.t.} \quad \|Z\|_N \le \delta \end{split}$$

We focus on the Frank-Wolfe method and its extensions

• A key driver of our work is the favorable low-rank structural properties of Frank-Wolfe

Frank-Wolfe has been directly (and indirectly) applied to NN_{δ} by [Jaggi and Sulovsk 2010], [Harchaoui, Juditsky, and Nemirovski 2012], [Mu et al. 2014], and [Rao, Shah, and Wright 2014]

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Frank-Wolfe For Low-Rank Matrix Completion, cont.

$$\begin{split} \mathsf{NN}_{\delta} : \quad f^* \quad := \quad \min_{Z \in \mathbb{R}^{m \times n}} \quad f(Z) := \frac{1}{2} \sum_{(i,j) \in \Omega} (Z_{ij} - X_{ij})^2 \\ \text{s.t.} \quad \|Z\|_N \le \delta \end{split}$$

As applied to NN_{δ} , at iteration k Frank-Wolfe computes

$$\tilde{Z}^k \leftarrow \arg\min_{\|Z\|_N \leq \delta} \left\{ \nabla f(Z^k) \bullet Z \right\}$$

and updates:

$$Z^{k+1} \leftarrow (1 - \bar{\alpha}_k) Z^k + \bar{\alpha}_k \tilde{Z}^k$$
 for some $\bar{\alpha}_k \in [0, 1]$

Note that $\tilde{Z}^k \leftarrow -\delta u_1(v_1)^T$ is a rank-one matrix where u_1 , v_1 are the singular vectors associated with the largest singular value of $\nabla f(Z^k)$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Properties of Frank-Wolfe Applied to NN_{δ}

At each iteration, Frank-Wolfe forms Z^{k+1} by adding a rank-one matrix \tilde{Z}^k to a scaling of the current iterate Z^k :

$$Z^{k+1} \leftarrow (1 - \bar{\alpha}_k) Z^k + \bar{\alpha}_k \tilde{Z}^k = (1 - \bar{\alpha}_k) Z^k - \bar{\alpha}_k \delta u_1(v_1)^T$$

Assuming that rank $(Z^0) = 1$, this implies that rank $(Z^k) \le k + 1$

Combined with the optimality guarantee for Frank-Wolfe, we have a nice tradeoff between data-fidelity and low-rank structure:

$$f(Z^k) - f^* \leq \frac{8\delta^2}{k+3}$$
 and $\operatorname{rank}(Z^k) \leq k+1$

What happens in practice?

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Practical Behavior of Frank-Wolfe Applied to NN_{δ} , cont.

Instance with m = 2000, n = 2500 and $rank(Z^*) = 37$

Frank-Wolfe Applied to a Typical Instance of NN_{δ} : 37 Iterations

 $rank(Z^k)$ vs. k

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Practical Behavior of Frank-Wolfe Applied to NN_{δ} , cont.

Instance with m = 2000, n = 2500 and $rank(Z^*) = 37$

Frank-Wolfe Applied to a Typical Instance of NN_{δ} : ~ 450 Iterations

 $rank(Z^k)$ vs. k

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 0000000

Practical Behavior of Frank-Wolfe Applied to NN_{δ} , cont.

Instance with m = 2000, n = 2500 and $rank(Z^*) = 37$

Frank-Wolfe Applied to a Typical Instance of NN_{δ} : ~ 2000 Iterations

 $rank(Z^k)$ vs. k

$$\log_{10}\left(\frac{f(Z^k)-f^*}{f^*}\right)$$
 vs. k

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Practical Behavior of Frank-Wolfe Applied to NN_{δ}

Theoretical bounds for Frank-Wolfe:

$$f(Z^k) - f^* \leq rac{8\delta^2}{k+3}$$
 and $\mathrm{rank}(Z^k) \leq k+1$

We propose an extension of Frank-Wolfe that:

- In theory has computational guarantees for f(Z^k) f* and rank(Z^k) that are at least as good as (and sometimes better than) Frank-Wolfe
- In practice is able to efficiently deliver a solution with the correct optimal rank and better training error than Frank-Wolfe

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Preview of In-Face Extended Frank-Wolfe Behavior

For this problem, $rank(Z^*) = 37$ (m = 2000, n = 2500)

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method •00000000000

Computation 00000000

Outline of Topics

- Motivating Application: Low-rank Matrix Completion
- Review of Frank-Wolfe Method
- Frank-Wolfe for Low-rank Matrix Completion
- "In-Face Step" Extension of Frank-Wolfe Method
- Computational Experiments and Results

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 0000000000

Computation 00000000

In-Face Extended Frank-Wolfe Overview

We develop a general methodological approach for preserving structure (low rank) while making objective function improvements based on "in-face directions"

For the matrix completion problem NN_{δ} , in-face directions preserve low-rank solutions

- This is good since Z^* should (hopefully) be low-rank
- Working with low-rank matrices also yields computational savings at all intermediate iterations

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

In-Face Directions

Let $\mathcal{F}_{\mathcal{S}}(x_k)$ denote the minimal face of S that contains x_k

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

In-Face Directions, cont.

An in-face step moves in <u>any</u> "reasonably good" direction that remains in $\mathcal{F}_S(x_k)$

The in-face direction should be relatively easy to compute

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

In-Face Directions, cont.

Main examples of "in-face" directions:

- Wolfe's "away step" direction
- Fully optimizing $f(\cdot)$ over $\mathcal{F}_S(x_k)$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

What are the Faces of the Nuclear Norm Ball?

The nuclear norm ball of radius δ :

 $\mathcal{B}(0,\delta) := \{ Z \in \mathbb{R}^{m \times n} : \| Z \|_{N} \le \delta \}$

Theorem [So 1990]: Minimal Faces of the Nuclear Norm Ball

Let $Z \in \partial \mathcal{B}(0, \delta)$ be given, and consider the thin SVD of $Z = UDV^T$. Then the minimal face of $\partial \mathcal{B}(0, \delta)$ containing Z is:

$$\mathcal{F}(Z) = \{ UMV^T : M \in \mathbb{S}^{r \times r}, \ M \succeq 0, \ \text{trace}(M) = \delta \} ,$$

and $\dim(\mathcal{F}(Z)) = r(r+1)/2 - 1$.

- Low-dimensional faces of the nuclear norm ball correspond to low-rank matrices on its boundary.
- All matrices lying on $\mathcal{F}(Z)$ have rank at most r
- $\mathcal{F}(Z)$ is a linear transformation of a standard spectrahedron

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

In-Face Extended Frank-Wolfe Method

In-face directions have two important properties:

- **1** They keep the next iterate within $\mathcal{F}_S(x_k)$
- ② They should be relatively easy to compute

Outline of each iteration of the In-Face Extended Frank-Wolfe Method:

- Ompute the in-face direction
- Occide whether or not to accept an in-face step (partial or full), by checking its objective function value progress
- If we reject an in-face step, compute a regular FW step

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

In-Face Steps

Three points to choose from:

- x_k^B : full step to the relative boundary of $\mathcal{F}_S(x_k)$
- x_k^A : partial step that remains in the relative interior of $\mathcal{F}_S(x_k)$
- x_k^R : the "regular" Frank-Wolfe step

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 000000000000

Computation 0000000

Decision Rule for In-Face Extended Frank-Wolfe Method

Recall the following useful property for regular FW with line-search or quadratic approximation line-search step-sizes:

$$\frac{1}{f(x_{i+1}) - B_{i+1}} \geq \frac{1}{f(x_i) - B_i} + \frac{1}{2C}$$

Note that these "reciprocal gaps" are available at every iteration

We will use these reciprocal gaps to measure the progress made by in-face directions

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 0000000

Decision Rule for In-Face Extended Frank-Wolfe Method, cont.

Decision Rule for In-Face Extended Frank-Wolfe Method

Set $\gamma_2 \geq \gamma_1 \geq 0$ (think $\gamma_2 = 1, \gamma_1 = 0.3$)

At iteration k:

1 Decide which of x_k^A , x_k^B , x_k^R , to accept as next iterate:

(Go to a lower-dimensional face.) Set $x_{k+1} \leftarrow x_k^B$ if

$$rac{1}{f(oldsymbol{x}^{B}_{k})-B_{k}}\geq rac{1}{f(oldsymbol{x}_{k})-B_{k}}+rac{\gamma_{1}}{2C}$$

2 (Stay in current face.) Else, set $x_{k+1} \leftarrow x_k^A$ if

$$\frac{1}{f(x_k^A) - B_k} \geq \frac{1}{f(x_k) - B_k} + \frac{\gamma_2}{2C}$$

(Do regular FW step and update lower bound.) Else, set $x_{k+1} \leftarrow x_k^R$.

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

Computational Guarantee for Extended FW Method

In the first k iterations, let:

 N_k^B = number of steps to the boundary of the minimal face N_k^A = number of steps to the interior of the minimal face N_k^R = number of regular Frank-Wolfe steps

$$k = N_k^B + N_k^A + N_k^R$$

Computational Guarantee for Extended Frank-Wolfe Method

Theorem: Suppose that the step-sizes are determined by exact line-search or QA line-search rule. After k iterations of the Extended Frank-Wolfe method it holds that:

$$f(x_k) - f^* < rac{2LD^2}{\gamma_1 N_k^B + \gamma_2 N_k^A + N_k^R} \; ,$$

where $D := \operatorname{diam}(S)$.

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 00000000

In-Face Extended Frank-Wolfe Summary

In-Face Extended Frank-Wolfe method intelligently combines "in-face directions" with "regular Frank-Wolfe directions"

Computational guarantees improve upon regular Frank-Wolfe

- Objective function value guarantee is still O(1/k)
- Guarantee bound on the rank of the iterates is stronger:

$$\operatorname{rank}(Z^k) \leq k+1-2N_k^B-N_k^A$$
.

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method 00000000000

Computation •0000000

Outline of Topics

- Motivating Application: Low-rank Matrix Completion
- Review of Frank-Wolfe Method
- Frank-Wolfe for Low-rank Matrix Completion
- "In-Face Step" Extension of Frank-Wolfe Method
- Computational Experiments and Results

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 0000000

Computational Experiments and Results

Here, we consider three versions of the In-Face Extended Frank-Wolfe method (IF-...):

- IF-(0, $\infty)$ uses the away-step strategy and sets $\gamma_1=0$ and $\gamma_2=+\infty$
- IF-Optimization based on using the in-face optimization strategy (does not require setting γ_1, γ_2)
- IF-Rank-Strategy uses the away-step strategy and adjusts the values of γ₁, γ₂ based on rank(Z^k)

We compare against regular Frank-Wolfe and two other away-step modified Frank-Wolfe algorithms

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation

Example with m = 2000, n = 2500, 1% observed entries, and $\delta = 8.01$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 0000000

Example with m = 2000, n = 2500, 1% observed entries, and $\delta = 8.01$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation

Example with m= 2000, n= 2500, 1% observed entries, and $\delta=$ 8.01

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation

Example with $m=2000,\ n=2500,\ 1\%$ observed entries, and $\delta=8.01$

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 0000000

Small-Scale Examples (results averaged over 25 samples)

We generated artificial examples via the model X = low-rank + noise, controlling for:

- SNR signal-to-noise ratio
- ρ fraction of observed entries
- r true underlying rank

Small-Scale Examples (25 samples per example)											
				In-Face Extended FW (IF)				Away Steps			
		Regular		γ_1, γ_2		In-Face	Rank			Fully	
Data	Metric	FW	1,1	0,1	0,∞	Opt.	Strategy	Natural	Atomic	Corrective FW	CoGEnT
$m = 200, n = 400, \rho = 0.10$	Time (secs)	29.51	22.86	23.07	7.89	2.34	2.30	14.71	6.21	8.76	20.85
$r = 10$, SNR = 5, $\delta_{avg} = 3.75$	Final Rank	118.68	16.36	16.36	16.44	29.32	28.20	16.72	119.00	92.84	79.96
	Maximum Rank	146.48	19.04	17.28	17.56	32.08	145.20	18.04	121.96	991.60*	**
$m = 200, n = 400, \rho = 0.20$	Time (secs)	115.75	153.42	150.89	27.60	20.62	3.48	50.52	24.52	196.29	65.88
$r = 15$ SNR = 4 $\delta_{min} = 3.82$	Final Rank	96 44	16 16	16 12	16.52	19.88	21.24	16.68	106 60	107 04	93 40
	Maximum Rank	156.52	26.72	17.96	17.80	31.48	160.36	18.84	106.80	1812.92*	**
$m = 200, n = 400, \rho = 0.30$	Time (secs)	171.23	198.96	202.01	35.93	31.67	5.04	66.22	67.72	>381.91	93.93
$r = 20$ SNR = 3 $\delta_{max} = 3.63$	Final Rank	91.80	20.08	20.08	20.60	21.72	25.56	20.44	94 64	113.84	104 60
	Maximum Rank	162.24	25.80	22.04	21.96	33.36	168.72	22.16	95.08	1609.40*	**

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 0000000

Small-Scale Examples (results averaged over 25 samples)

		In-Face	I FW (IF)	
_		γ_1, γ_2	In-Face	Rank
Data	Methods	0,∞	Opt.	Strat.
$m = 200, n = 400, \rho = 0.10$	Time (secs)	7.89	2.34	2.30
$r = 10, SNR = 5, \delta_{avg} = 3.75$	Final Rank	16.44	29.32	28.20
	Maximum Rank	17.56	32.08	145.20
$m = 200, n = 400, \rho = 0.20$	Time (secs)	27.60	20.62	3.48
$r = 15$, SNR = 4, $\delta_{ave} = 3.82$	Final Rank	16.52	19.88	21.24
, , , <u>, , , , , , , , , , , , , , , , </u>	Maximum Rank	17.80	31.48	160.36
$m = 200, n = 400, \rho = 0.30$	Time (secs)	35.93	31.67	5.04
$r = 20$, SNR = 3, $\delta_{avg} = 3.63$	Final Rank	20.60	21.72	25.56
	Maximum Rank	21.96	33.36	168.72

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 0000000

Small-Scale Examples (results averaged over 25 samples)

		In-Face Extended					
		γ_1, γ_2	In-Face	Rank			
Data	Methods	0,∞	Opt.	Strat.			
$m = 200, n = 400, \rho = 0.10$	Time (secs)	7.89	2.34	2.30			
$r = 10$, SNR = 5, $\delta_{avg} = 3.75$	Final Rank	16.44	29.32	28.20			
	Maximum Rank	17.56	32.08	145.20			
$m = 200, n = 400, \rho = 0.20$	Time (secs)	27.60	20.62	3.48			
$r = 15$, SNR = 4, $\delta_{avg} = 3.82$	Final Rank	16.52	19.88	21.24			
	Maximum Rank	17.80	31.48	160.36			
$m = 200, n = 400, \rho = 0.30$	Time (secs)	35.93	31.67	5.04			
$r = 20$, SNR = 3, $\delta_{max} = 3.63$	Final Rank	20.60	21.72	25.56			
	Maximum Rank	21.96	33.36	168.72			

- IF-(0, ∞) reliably always delivers a solution with the lowest rank reasonably quickly
- IF-Rank-Strategy delivers the best run times beating existing methods by a factor of 10 or more
- IF-Rank-Strategy sometimes fails on large problems IF-Optimization is more robust

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 0000000

MovieLens10M Dataset, m = 69878, n = 10677, $|\Omega| = 10^7$ (1.3% sparsity), and $\delta = 2.59$

MovieLens10M Dataset									
	Frank-Wo	olfe	IF-(0, ∞	IF-(0, ∞)					
Relative Optimality Gap	Time (mins)	Rank	Time (mins)	Rank					
10^-1.5	7.38	103	7.01	44					
10 ⁻²	28.69	315	14.73	79					
$10^{-2.25}$	69.53	461	22.80	107					
$10^{-2.5}$	178.54	454	42.24	138					

For this large-scale instance, we test IF-(0, ∞), which is most promising at delivering a low-rank solution, and benchmark against Frank-Wolfe

Matrix	Com	pletion

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Summary

- Despite guarantees for f(Z^k) f* and rank(Z^k), the Frank-Wolfe method can fail at delivering a low-rank solution within a reasonable amount of time.
- In-face directions are a general methodological approach for preserving structure (low rank) while making objective function improvements
- Computational guarantees for In-Face Extended FW Method in terms of optimality gaps
- In the case of matrix completion, In-Face Extended FW
 - has computational guarantees in terms of improved bounds on the rank of the iterates
 - is able to efficiently deliver a low-rank solution reasonably quickly in practice
- Paper includes full computational evaluation on simulated and real data instances

Paper:

"An Extended Frank-Wolfe Method with 'In-Face' Directions, and its Application to Low-Rank Matrix Completion"

Available at http://arxiv.org/abs/1511.02204

Frank-Wolfe for Matrix Completion

"In-Face" Extended FW Method

Computation 0000000

Back-up: Medium-Large Scale Examples

Medium-Large Scale Examples										
			In-Face Extended FW (IF)				Away Steps			
Data	Metric	Regular FW	1,1	$\frac{\gamma_1, \gamma_2}{0, 1}$	0,∞	In-Face Opt.	Rank Strategy	Natural	Atomic	Fully Corrective FW
$m = 500, n = 1000, \rho = 0.25$	Time (secs)	137.62	51.95	53.21	18.20	4.41	6.37	31.55	157.31	39.81
$r = 15, \text{SNR} = 2, \delta = 3.57$	Final Rank (Max Rank)	53 (126)	16 (17)	15 (17)	16 (17)	17 (19)	121 (136)	15 (17)	50 (52)	78 (984*)
$\begin{array}{l} m = 500, n = 1000, \rho = 0.25 \\ r = 15, {\sf SNR} = 10, \delta = 4.11 \end{array}$	Time (secs)	256.08	110.37	110.77	46.07	6.76	7.91	73.95	322.24	227.50
	Final Rank (Max Rank)	41 (128)	15 (17)	15 (17)	16 (17)	15 (18)	18 (140)	16 (17)	48 (48)	81 (971*)
$\begin{array}{l} m = 1500, n = 2000, \rho = 0.05 \\ r = 15, {\rm SNR} = 2, \delta = 6.01 \end{array}$	Time (secs)	124.76	108.97	113.58	24.75	11.09	12.71	40.23	60.83	48.76
	Final Rank (Max Rank)	169 (210)	15 (18)	16 (17)	16 (16)	31 (44)	206 (206)	16 (16)	128 (138)	106 (736*)
$\begin{array}{l} m = 1500, n = 2000, \rho = 0.05 \\ r = 15, {\sf SNR} = 10, \delta = 8.94 \end{array}$	Time (secs)	>800.01	518.72	496.08	166.01	21.90	31.41	309.58	407.22	>801.89
	Final Rank (Max Rank)	119 (266)	15 (17)	15 (17)	15 (17)	15 (23)	15 (256)	15 (18)	172 (185)	125 (790*)
	Time (secs)	105.44	45.39	36.47	23.15	20.07	47.83	30.07	26.92	39.65
	Final Rank (Max Rank)	436 (436)	37 (38)	35 (38)	37 (38)	67 (107)	430 (430)	37 (39)	245 (276)	238 (502*)
$\begin{array}{l} m = 2000, n = 2500, \rho = 0.05 \\ r = 10, {\rm SNR} = 2, \delta = 5.82 \end{array}$	Time (secs)	99.84	51.90	48.26	18.79	6.92	6.70	30.37	89.09	55.11
	Final Rank (Max Rank)	68 (98)	10 (11)	10 (11)	11 (11)	13 (15)	94 (94)	10 (11)	52 (52)	62 (370*)
	Time (secs)	251.33	168.66	172.21	64.56	26.25	17.70	96.79	90.41	350.88
	Final Rank (Max Rank)	161 (162)	10 (24)	11 (18)	11 (20)	22 (34)	20 (112)	10 (16)	181 (182)	92 (616*)
	Time (secs)	272.19	107.19	116.58	52.65	54.02	145.13	107.60	94.96	209.86
	Final Rank (Max Rank)	483 (483)	33 (43)	34 (36)	32 (37)	63 (123)	476 (476)	36 (42)	229 (298)	204 (331*)