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Introduction

• The Federal Aviation Administration 
(FAA) is very concerned

• Safety with autonomy in the loop

• Regulation, certification
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Ideal goal: Formally guarantee that the 
robot will operate safely

• Dynamics are complicated and uncertain

• Cluttered (e.g., urban) environments



Introduction
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• Challenges not restricted to unmanned aerial vehicles (UAVs)



Roadmap

1. Focus on high-speed unmanned aerial vehicle (UAV) flight

2. Sum-of-squares (SOS) programming-based algorithms for 
designing feedback controllers with formal guarantees on safety

3. Real-time planning in previously unseen environments

4. Hardware experiments on a small fixed-wing airplane flying 
through cluttered environments
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Guarantee that UAV will fly through an environment 
without collisions given no prior map

General problem

5

• Assumptions:

• Model of dynamics

• Model of bounded uncertainty 
in dynamics

• Obstacles reported in a finite 
sensor horizon



Important sub-problem

• How to plan a single maneuver such that the 
UAV is guaranteed to be collision-free?
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• Computing reachable sets using Hamilton Jacobi Bellman (HJB) equation

• Linear systems + bounded uncertainty                                        
[Kurzhanski ’01, Girard ’05, ...]

• Nonlinear systems + bounded uncertainty                                        
[Tomlin ’03, Mitchell ’05, Gillula ’10, ...]

Related work

• Robust kinematic motion planning

• [Brooks ’82, Lozano-Perez ’84, Jacobs ’90, Latombe ’90, 
Missiuro ’06, Guibas ’08, Malone ’13, ...]
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• Planning under uncertainty

• [Feldman ’77, Littman ’95,  Kaelbling ’98, LaValle ’98, Prentice ’09,  Candido’11, Patil ’15 ...]



Online planning

• Receding horizon control

• Repeatedly evaluate sampled set of control sequences
Approach

Offline computation: 

• Compute trajectory library        
[Stolle ’06, Frazzoli ’01]

• Widely used: [Stentz ’07, Liu ’13, 
Barry ’16...] 

• Compute feedback controllers

• Compute “funnels” around each 
maneuver that the airplane is 
guaranteed to remain in
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Approach

Online computation: 

• Search through library to 
find a collision free funnel
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This guarantees that the robot will 
remain collision free
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Offline Computation



Funnels

• Control system:
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ẋ = f(x(t),w(t),u(t)), u(t) 2 Rm

• Design feedback controller that 
minimizes size of funnel

x(t) 2 Rn : state

u(t) 2 Rm
: control input

w(t) 2 Rd : disturbance



Funnel

• Funnel is represented as a time-
varying sub-level set:
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F(t) = {x(t) 2 Rn|V (t,x(t))  ⇢(t)}

x(0) 2 F(0) =) x(t) 2 F(t), 8t 2 [0, T ]

V (t,x) = ⇢(t) =) V̇ (t,x) < ⇢̇(t), 8t 2 [0, T ]

• Guarantees invariance:

• Lyapunov condition [Tedrake ’09]:



• Lyapunov condition:

• Can guarantee invariance despite bounded uncertainty:

Robust Funnel

• Dynamics subject to bounded uncertainty:
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ẋ(t) = f(x(t),w(t)), w(t) 2 W

x(0) 2 F(0) =) x(t) 2 F(t), 8w : [0, T ] ! W

V (t,x) = ⇢(t) =) V̇ (t,x,w) < ⇢̇(t), 8w 2 W

[Majumdar & Tedrake, WAFR’12]
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Implementation using SOS Programming

• Approximate dynamics with polynomials

• Impose Lyapunov conditions for funnels using using Sum-of-Squares 
(SOS) programming 

• SOS programs for UAV: 12 variables (typically degree 4 SOS constraints)

V (t,x) = ⇢(t) =) V̇ (t,x,w) < ⇢̇(t), 8w 2 W



Feedback control synthesis

• Control system:

15

ẋ = f(x(t),w(t),u(t)), u(t) 2 Rm

[Majumdar, Ahmadi & Tedrake, ICRA’13]. Best Paper Award.

• Can design controller that explicitly 
minimizes size of funnel

• Alternate between search for 
Lyapunov function and controller



Hardware validation
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Goal: Demonstrate that guarantees from funnel 
are valid on real hardware system



Hardware validation on fixed-wing airplane

• SBach:

•  Small acrobatic RC airplane

• System identification: accurate 12 state dynamic model

• Rigid-body subject to aerodynamic forces

• Lift/drag coefficients: flat-plate model + correction

• Model refined using data from flights

• Parametric uncertainty: decreased as model improved

• Experiments are in motion capture arena

• Computation is off-board

17[Majumdar & Tedrake ’16,  arXiv:1601. 04037]



Funnel
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Computation time: ~30 mins



Flying through funnel
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Experimental results

• Funnel is valid for 
hardware experiments 

• 30 flights

• Different initial 
conditions in inlet of 
funnel

• All trajectories remain 
within the 12 dimensional 
funnel
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Experimental results

• Funnel is valid for 
hardware experiments 

• 30 flights

• Different initial 
conditions in inlet of 
funnel

• All trajectories remain 
within the 12 dimensional 
funnel
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Boundary of funnel
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Online Computation



Online computation
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• How to deal with obstacles reported by sensors at 
runtime?



Real-time planning with funnels

• Search through pre-computed 
library of funnels

24[Majumdar & Tedrake, WAFR’12]

• Find one whose projection is collision free

• This is a purely geometric problem

• Leverage mature collision libraries 
(e.g., Bullet)  



Exploiting invariances in dynamics

• What if we cannot find a collision-free 
funnel?

• Idea: Exploit invariances in dynamics

• e.g., shift invariance

• Shifting a funnel results in a valid 
funnel

• Shift funnel while maintaining current 
state in “inlet”

25[Majumdar & Tedrake ’16,  arXiv:1601. 04037]
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Can handle using a convex Quadratically Constrained Quadratic Program

Exploiting invariances in dynamics

• What if we cannot find a collision-free 
funnel?

• Idea: Exploit invariances in dynamics

• e.g., shift invariance

• Shifting a funnel results in a valid 
funnel

• Shift funnel while maintaining current 
state in “inlet”

27[Majumdar & Tedrake ’16,  arXiv:1601. 04037]



Exploiting invariances in dynamics
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• For each segment of funnel, find collision 
normal and distance to each obstacle

• This defines a separating hyperplane to 
each obstacle

• These are linear constraints

• Containment of current state in inlet of 
funnel (convex quadratic constraint)

• Convex QCQP!

• Extremely fast software based on code 
generation (e.g., ForcesPro [Domahidi ’14])



Hardware experiments

• 40 pre-computed funnels

• Planner is informed 
obstacle locations when 
airplane clears launcher

29[Majumdar & Tedrake ’16,  arXiv:1601. 04037]



Results
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Examples of planned funnels
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Importance of exploiting invariances
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Best funnel with no shifting



Importance of exploiting invariances
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Best funnel with no shifting Best funnel with shifting
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Flying continuously



Receding horizon planning

• Quadrotor: 12 states, 4 control inputs

• Uncertain “cross-wind” 
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Constraints on environment guarantee that 
collision-free funnels will always be found
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Receding horizon planning



Robust real-time planning using 
contraction theory
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Joint work with Sumeet Singh (Stanford), 
 Marco Pavone (Stanford), Jean-Jacques Slotine (MIT)



Do we need a fixed library of funnels?

• Ideal goal: Generate a funnel around any nominal trajectory

• Need a notion of invariance that is independent of a specific 
trajectory

• Incremental exponential stability (IES):
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• Goal: design a tracking feedback controller that can be 
applied to any feasible trajectory and make it IES



Contraction Theory

• Contraction theory [Lohmiller and 
Slotine ’98]:

• Convergence between trajectories

• Dynamics of (infinitesimal) distances 
between trajectories is linear
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• Control contraction metrics (CCMs) [Manchester and Slotine ’15, ’16]:

• Design a differential controller using a differential Control Lyapunov 
Function

• Conditions based on SOS programming



Robust real-time motion planning
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• Offline:

• CCM tracking controller can be used to make any nominal 
trajectory IES

• This gives us a (fixed-size) funnel around any nominal trajectory

• Analysis extends to bounded disturbances

• Online:

• Compute nominal trajectory such that funnel around it is 
collision-free

• Receding horizon planning

[Singh, Majumdar, Slotine, Pavone ’17 (Under Review)]



Example: Planar Quadrotor
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Cross-Wind:	
0.1	!/#$

[Singh, Majumdar, Slotine, Pavone ’17 (Under Review)]

6 states, 2 inputs



Challenges and Future Directions
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• Sensing and estimation

• Exciting new sensors (e.g., Intel’s RealSense, FPGA stereo, sparse stereo, …)

• How can we make guarantees with sensing?

• Real-time planning with probabilistic guarantees

• e.g., won’t collide with 0.95 probability (with stochastic wind gusts)

• Using such certificates for real-time planning

• Formal/model-based tools and data-driven learning

• How can we combine model-based tools with data-driven approaches?
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Contributions and Future Work
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Funnels and controllers

Real-time planning using funnels

• Guarantees that system will remain within funnel

• Computed using powerful tools from SOS programming

• Collision-free funnel guarantees safety

• Formal guarantees and learning

• Can handle complicated geometric constraints at runtime

Future work

• Guarantees with sensing/estimation

Tremendous potential to make robots operate safely in real environments

• Real-time planning with probabilistic guarantees


