
Sum of squares techniques
and polynomial optimization

Pablo A. Parrilo

Laboratory for Information and Decision Systems
Electrical Engineering and Computer Science

Massachusetts Institute of Technology
www.mit.edu/~parrilo

CDC 2016 - Las Vegas

1 / 23



Polynomial problems

We will discuss optimization and decision problems involving multivariate
polynomials.

Usually, this means a standard optimization problem

min f (x) s.t. gi (x) ≤ 0,

where the objective and constraints are polynomial expressions.

We may also have (slightly) more complicated quantified formulas, and
problems where the variables are themselves polynomials.

Focus on the basic ideas, emphasizing the geometric and complexity
aspects. Much more is known.

Where do these problems appear?
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Stability of dynamical systems

Given a system of ODEs

ẋ(t) = f (x(t)), x(0) = x0

Want to prove stability, i.e., that solutions
converge to the origin for all initial conditions −5 −4 −3 −2 −1 0 1 2 3 4 5
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To prove this, need to find an energy-like Lyapunov function:

V (x) ≥ 0, V̇ (x) :=

(
∂V

∂x

)T

f (x) ≤ 0

Many variations: uncertain parameters, time delays, PDEs, etc.
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Partial differential inequalities

Solutions for linear PDIs:

Dissipation or Lyapunov:

V (x) ≥ 0,

(
∂V

∂x

)T

f (x) ≤ 0, ∀x

Hamilton-Jacobi:

V (x , t) ≥ 0, −∂V

∂t
+H(x ,

∂V

∂x
) ≤ 0, ∀(x , u, t)
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Very difficult in three or higher dimensions.

Many approaches: approximation, discretization, level-set methods...

How to find certified solutions?
Can we obtain bounds on linear functionals of the solutions?
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Motivation

Common properties:

Can be expressed/approximated with polynomials and/or rational
functions

Include nonnegativity constraints (perhaps implicitly)

Provably difficult (NP-complete, or worse)

These correspond to a very large class of problems:
quantified polynomial inequalities or semialgebraic problems.
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Roadmap

Motivating examples

Optimization over polynomials

Sum of squares programs

Convexity, relationships with semidefinite programming
Geometric interpretations

Certificates

Examples: extremal polynomials, joint spectral radius

Exploiting structure: algebraic and numerical techniques.

Perspectives, challenges, open questions
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Things get complicated. . .

The set of nonnegative polynomials is not basic semialgebraic.

The set {(a1, . . . , an) |
∑n

k=1 akxk ≥ 0 ∀x} cannot be described using a
finite number of unquantified polynomial inequalities gi (a1, . . . , an) ≥ 0.

Ex: Consider the convex set of (a, b) for which

x4 + 2ax2 + b ≥ 0 ∀x ∈ R

This set cannot be defined by {gi (a, b) ≥ 0}.
-2 -1.5 -1 -0.5 0.5 1 1.5 2

a

-1

-0.5

0.5

1

1.5

2

b

004

2

-2 -1.5 -1 -0.5 0.5 1 1.5 2
a

-1

-0.5

0.5

1

1.5

2

b

Gets worse in higher dimensions. We need either:

Boolean set operations (unions of basic SA sets)

Embed in higher dimensional spaces (lift and project)
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Semidefinite programming (LMIs)

A broad generalization of LP to symmetric matrices

minTrCX s.t. X ∈ L ∩ Sn+

PSD cone

O

L

The intersection of an affine subspace L and the cone of positive
semidefinite matrices.

Lots of applications. A true “revolution” in computational methods
for engineering applications

First applications in control theory and combinatorial optimization.
Nowadays, applied everywhere.

Convex finite dimensional optimization. Nice duality theory.

Essentially, solvable in polynomial time (interior point, etc.)
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Sum of squares

As we have seen, handling nonnegativity directly is too difficult. Instead. . .

A multivariate polynomial p(x) is a sum of squares (SOS) if

p(x) =
∑
i

q2
i (x), qi (x) ∈ R[x ].

If p(x) is SOS, then clearly p(x) ≥ 0 ∀x ∈ Rn.

Convex condition: p1, p2 SOS ⇒ λp1 + (1− λ)p2 SOS for 0 ≤ λ ≤ 1.

SOS polynomials form a convex cone

For univariate or quadratic polynomials, SOS and nonnegativity are
equivalent.
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From LMIs to SOS

LMI optimization problems:

affine families of quadratic forms, that are nonnegative.

Instead, for SOS we have:

affine families of polynomials, that are sums of squares.

An SOS program is an optimization problem with SOS constraints:

minui c1u1 + · · ·+ cnun

s.t Pi (x , u) := Ai0(x) + Ai1(x)u1 + · · ·+ Ain(x)un are SOS

This is a finite-dimensional, convex optimization problem.
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SOS programs: questions

Why not just use nonnegative polynomials?
While convex, unfortunately it’s NP-hard ;(

And is SOS any better?
Yes, we can solve SOS programs in polynomial time

Aren’t we losing too much then?
In several important cases (quadratic, univariate, etc), nonnegativity
and SOS is the same thing.

And in the other cases?
Low dimension, computations and some theory show small gap.
Recent negative results in very high dimension, though (Blekherman)

Isn’t it a very special formulation?
No, we can approximate any semialgebraic problem!

How? And how do you solve them?
OK, I’ll tell you. But first, an example!
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Global optimization

Given a multivariate polynomial, can we find the global minimum?
Not convex. Many local minima. NP-hard. How to find good lower
bounds?

Find the largest γ s.t.

F (x , y)− γ is SOS.

If exact, can recover optimal solution.

Surprisingly effective.
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Often, the optimal γ is the true minimum.
Extensions to constrained case via representation theorems
(Putinar/Lasserre) or the Positivstellensatz, yield hierarchies of relaxations.
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SOS constraints are SDPs

“Gram matrix” method: F (x) is SOS iff F (x) = w(x)TQw(x), where
w(x) is a vector of monomials, and Q � 0.
Let F (x) =

∑
fαxα. Index rows and columns of Q by monomials. Then,

F (x) = w(x)TQw(x) ⇔ fα =
∑

β+γ=α

Qβγ

Thus, we have the SDP feasibility problem

fα =
∑

β+γ=α

Qβγ , Q � 0
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SOS Example

F (x , y) = 2x4 + 5y4 − x2y2 + 2x3y

=

 x2

y2

xy

T  q11 q12 q13

q12 q22 q23

q13 q23 q33

 x2

y2

xy


= q11x4 + q22y4 + (q33 + 2q12)x2y2 + 2q13x3y + 2q23xy3

An SDP with equality constraints. Solving, we obtain:

Q =

 2 −3 1
−3 5 0
1 0 5

 = LTL, L =
1√
2

[
2 −3 1
0 1 3

]

And therefore F (x , y) = 1
2 (2x2 − 3y2 + xy)2 + 1

2 (y2 + 3xy)2

14 / 23



Example 1: range of nonnegativity

For what range of values of a is the polynomial

P(x , y) = x4 + y2 − 4axy + (2a− 3)x2 + ax + 20

a sum of squares? Nonnegative?
For SOS, essentially:

sosprogram([x,y]); sosdecvar([a]);

P = x^4 + y^2 - 4*a*x*y + (2*a-3)*x^2 + a*x + 20 ;

sosineq(P); sossetobj(a);

sossolve; sosgetsol(a);

The solution: a ∈ [−.94823, 1.42413] (numerically correct to 8+ digits).
Both are roots of the irreducible polynomial

1613120 + 545280a − 1234772a2 + 517544a3 − 364251a4 − 410208a5 + 369408a6 − 164224a7 + 82176a8.

Interestingly, for SOS the range is the same as that for P(x , y) ≥ 0.

15 / 23



Example 2: extremal polynomials

Given n ≥ 1, define p(x) =
∑n

i=0 aix
i , and consider the problem:

max
a0,...,an

an s.t. |p(x)| < 1 ∀x ∈ [−1, 1],

In words:

How large can the leading coefficient of a univariate polynomial be if the
polynomial is unit-bounded in the [−1, 1] interval?

What is the optimal value? What does the extreme p(x) look like?

A QE problem with two blocks of quantifiers, in n + 2 variables:

(∃a0)(∃a1) · · · (∃an−1)(∀x)[x ≥ −1 ∧ x ≤ 1]⇒ [anxn + · · · + a0 ≤ 1 ∧ anxn + · · · + a0 ≥ −1]

Can we solve it? For what values of n?
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Example 2 (continued)

By the Markov-Lukacs theorem,

p(x) ≥ 0, ∀ x ∈ [−1, 1] ⇐⇒ p(x) = s(x) + t(x)(1− x2),

where s(x) and t(x) are SOS.

The optimal value is an = 2n−1, and the optimal p(x) are Chebyshev
polynomials.

Highly degenerate solution,
p(x) has many global minima.

For n ≤ 12, we solve it in ≈ 1 sec.

For larger n, numerical issues become
important.
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Chebyshev polynomial of degree 8
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Example: Joint spectral radius

Given a set of n × n matrices Σ := {A1, . . . ,Am}, what is the maximum
“growth rate” that can be achieved by arbitrary switching?

ρ(Σ) := lim sup
k→+∞

max
σ∈{1,...,m}k

||Aσk · · ·Aσ2Aσ1 ||1/k

Appeared in several different contexts: linear algebra (Rota-Strang 1960),
wavelets (Daubechies-Lagarias 1992), switched linear systems, etc.

If m = 1, then ρ({A1}) is the spectral radius max |λ(A)|.
If m ≥ 2, determining if ρ(Σ) ≤ 1 is undecidable (Blondel-Tsitsiklis 2000).
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Upper bounds via polynomials

Thm: Let p(x) be a strictly positive homogeneous multivariate polynomial
of degree 2d , that satisfies

γ2d p(x) − p(Aix) ≥ 0 ∀x ∈ Rn i = 1, . . . ,m

Then, ρ(Σ) ≤ γ.
A natural relaxation is obtained by replacing nonnegativity by SOS. Then:
Thm: The SOS relaxation satisfies:(n+d−1

d

)− 1
2d ρSOS,2d ≤ ρ(Σ) ≤ ρSOS ,2d . (1)

Approximation ratio is independent of the number of matrices. As
d →∞, the factor converges to 1.

Generalizations to constrained switching (Ahmadi et al. 2012).
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SOS and SDP

Strong relationship between SOS programs and SDP.
In full generality, they are equivalent to each other.

Semidefinite matrices are SOS quadratic forms.

Conversely, can embed SOS polynomials into PSD cone.

However, they are a very special kind of SDP, with very rich algebraic and
combinatorial properties.
Exploiting this structure is crucial in applications.
Both algebraic and numerical methods are required.
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Exploiting structure: algebraic and numerical

P-satz

relaxations

Exploit

structure

Representation

Displacement rank

Orthogonalization

Graph structure Semidefinite

programs

Polynomial

descriptions

Symmetry reduction

Ideal structure

Sparsity

Symmetry reduction

Ideal structure

Sparsity

SOS

Programs
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Perspectives, challenges, open questions

Theory:

Better understanding of interaction between algebra and convexity
(“convex algebraic geometry”)
Minimum rank decompositions? Low-rank approaches?
Proof complexity, lower bounds, etc.
Connections with theoretical computer science

Computation and numerical efficiency:

Specialized algorithms, better than SDP
Alternatives to interior point methods?
Increase numerical stability (better bases, splines, etc)
Representation issues: straight-line programs?

Many more applications. . .
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Summary

A very rich class of optimization problems

Methods have enabled many new applications

Mathematical structure must be exploited for reliability and efficiency

Combination of numerical and algebraic techniques.

Fully algorithmic implementations

If you want to know more:

Papers, slides, lecture notes, software, etc. at website:
www.mit.edu/~parrilo

Thanks for your attention!
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