Dimension reduction for semidefinite programming

Pablo A. Parrilo

Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

Joint work with Frank Permenter (MIT)

arXiv:1608.02090

CDC 2016 - Las Vegas

Semidefinite programs (SDPs)

$$\begin{array}{ll} \text{minimize} & \text{Tr } CX \\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$$

Formulated over vector space \mathbb{S}^n of $n \times n$ symmetric matrices.

- variable $X \in \mathbb{S}^n$
- $A \subseteq \mathbb{S}^n$ an affine subspace, $C \in \mathbb{S}^n$ cost matrix
- \mathbb{S}^n_+ cone of psd matrices

Efficiently solvable in theory; in practice, solving some instances impossible unless special structure is exploited.

Dimension reduction

Reformulate problem over subspace $S \subseteq \mathbb{S}^n$ intersecting set of optimal solutions

where $\mathbb{S}^n_+ \cap \mathcal{S}$ equals product $\mathcal{K}_i \times \cdots \times \mathcal{K}_m$ of 'simple' cones.

Reduction methods: symmetry reduction and facial reduction

Symmetry reduction (MAXCUT relaxation example)

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX \\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

 $A := \{X \in \mathbb{S}^n : X_{ii} = 1\}$ C :=adjacency matrix

Symmetry reduction (MAXCUT relaxation example)

$$\mathcal{A} := \{X \in \mathbb{S}^n : X_{ii} = 1\}$$
 $C := \text{adjacency matrix}$

Idea: find special projection map P

- \bullet P(X) optimal when X optimal.
- P explicitly constructed from automorphism group of graph.
- Range 'block-diagonal'—a direct-sum of matrix algebras.

(e.g., Schrijver '79; Gatermann-P. '03)

Facial reduction

First, find *face* of \mathbb{S}^n_+ containing feasible set.

- There exists a hyperplane H^{\perp} containing A.
- $\mathbb{S}^n_+ \cap H^{\perp}$ a face—isomorphic to \mathbb{S}^d_+ for d < n.
- Face $\mathbb{S}^n_+ \cap H^{\perp}$ contains feasible set $\mathcal{A} \cap \mathbb{S}^n_+$.

Facial reduction

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX \\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

First, find *face* of \mathbb{S}^n_+ containing feasible set.

- There exists a hyperplane H^{\perp} containing \mathcal{A} .
- $\mathbb{S}^n_+ \cap H^{\perp}$ a face—isomorphic to \mathbb{S}^d_+ for d < n.
- Face $\mathbb{S}^n_+ \cap H^{\perp}$ contains feasible set $\mathcal{A} \cap \mathbb{S}^n_+$.

Next, reformulate SDP over face:

Facial reduction

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX \\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

First, find *face* of \mathbb{S}^n_+ containing feasible set.

- There exists a hyperplane H^{\perp} containing A.
- $\mathbb{S}^n_+ \cap H^{\perp}$ a face—isomorphic to \mathbb{S}^d_+ for d < n.
- Face $\mathbb{S}^n_+ \cap H^{\perp}$ contains feasible set $\mathcal{A} \cap \mathbb{S}^n_+$.

Next, reformulate SDP over face:

Borwein-Wolkowicz '81; Pataki '00; Permenter-P. '14

Application specific approaches

Facial reduction:

- MAXCUT (Anjos, Wolkowicz)
- QAP (Zhao, Wolkowicz)
- Sums-of-squares optimization (Permenter-P., Waki-Muramatsu)
- Matrix completion (Krislock, Wolkowicz)
- ..

Symmetry reduction:

- MAXCUT (earlier example),
- QAP (de Klerk, Sotirov);
- Markov chains (Boyd et al.);
- codes (Schrijver; Laurent)
- ...

Our approach

This talk: new reduction method subsuming symmetry reduction

- Notion of 'optimal' reductions.
- A general purpose algorithm with optimality guarantees
- Jordan algebra interpretation; hence, easy extension to symmetric cone optimization (e.g., LP, SOCP).
- Combinatorial refinements for computational efficiency

How does symmetry reduction work?

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_+} \operatorname{Tr} CX$, method finds special orthogonal projection $P: \mathbb{S}^n \to \mathbb{S}^n$

If X feas./optimal, P(X) feas./optimal.

How does symmetry reduction work?

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_+} \operatorname{Tr} CX$, method finds special orthogonal projection $P: \mathbb{S}^n \to \mathbb{S}^n$

If X feas./optimal, P(X) feas./optimal.

P satisfies following conditions:

$$P(A) \subseteq A$$
, $P(\mathbb{S}_{+}^{n}) \subseteq \mathbb{S}_{+}^{n}$, $P(C) = C$

How does symmetry reduction work?

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_+} \text{Tr } CX$, method finds special orthogonal projection $P: \mathbb{S}^n \to \mathbb{S}^n$

If X feas./optimal, P(X) feas./optimal.

P satisfies following conditions:

$$P(A) \subseteq A$$
, $P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+$, $P(C) = C$

• Hence, if X feasible then P(X) feasible with equal cost:

 $A := \{X \in \mathbb{S}^n : X_{ii} = 1\}$ C :=adjacency matrix

 $A := \{X \in \mathbb{S}^n : X_{ii} = 1\}$ C :=adjacency matrix

 $\begin{array}{ll} \text{minimize} & \text{Tr } \textit{CX} \\ \text{subject to} & \textit{X} \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

 $A := \{X \in \mathbb{S}^n : X_{ii} = 1\}$ C :=adjacency matrix

Let G denote group of permutation matrices (automorphisms)

$$\mathcal{G} := \{ U \text{ a permutation matrix } : U^T C U = C \}$$

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX \\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

 $A := \{X \in \mathbb{S}^n : X_{ii} = 1\}$ C := adjacency matrix

Let G denote group of permutation matrices (automorphisms)

$$\mathcal{G} := \{ U \text{ a permutation matrix } : U^T C U = C \}$$

Taking $P(X) := \frac{1}{|\mathcal{G}|} \sum_{U \in \mathcal{G}} U^T X U$, desired conditions hold:

$$P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+$$
 $P(\mathcal{A}) \subseteq \mathcal{A},$ $P(C) = C$

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX \\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

 $A := \{X \in \mathbb{S}^n : X_{ii} = 1\}$ C := adjacency matrix

Let G denote group of permutation matrices (automorphisms)

$$\mathcal{G} := \{ U \text{ a permutation matrix } : U^T C U = C \}$$

Taking $P(X) := \frac{1}{|\mathcal{G}|} \sum_{U \in \mathcal{G}} U^T X U$, desired conditions hold:

$$P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+$$
 $P(\mathcal{A}) \subseteq \mathcal{A},$ $P(C) = C$

Hence, range of P contains solutions: when X feasible, P(X) feasible with equal cost.

Our approach: optimize over projections

Given SDP $\min_{X\in\mathcal{A}\cap\mathbb{S}^n_+}\langle C,X\rangle$, find map P that solves

```
minimize rank P
subject to P(C) = C, P(I) = I
P(A) \subseteq A
P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+
P: \mathbb{S}^n \to \mathbb{S}^n an orthogonal projection.
```

Our approach: optimize over projections

Given SDP $\min_{X\in\mathcal{A}\cap\mathbb{S}^n_+}\langle C,X\rangle$, find map P that solves

```
minimize rank P subject to P(C) = C, P(I) = I P(A) \subseteq A P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+ P: \mathbb{S}^n \to \mathbb{S}^n an orthogonal projection.
```

Main properties:

- Can be solved in polynomial time (!)
- Range of P structured: a *Jordan subalgebra* of \mathbb{S}^n .
- $\mathbb{S}^n_+ \cap \text{range } P \text{ equals a product of symmetric cones.}$

Invariance characterization of optimal subspace

Theorem (Permenter-P.)

Orthogonal projection $P: \mathbb{S}^n \to \mathbb{S}^n$ solves

minimize rank P
subject to
$$P(C) = C, P(I) = I$$

 $P(A) \subseteq A$
 $P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+$

iff the range of P solves

where $A = X_{\mathcal{L}^{\perp}} + \mathcal{L}$, and $X_{\mathcal{L}^{\perp}}$ is the min-norm point of A.

```
minimize \dim S
subject to S \ni C, X_{C^{\perp}}, I
```

$$\begin{array}{ll} \dim \mathcal{S} & \mathcal{S} \leftarrow \operatorname{span}\{C, X_{\mathcal{L}^{\perp}}, I\} \\ \mathcal{S} \ni C, X_{\mathcal{L}^{\perp}}, I & \text{repeat} \\ \mathcal{S} \supseteq P_{\mathcal{L}}(\mathcal{S}) & \mathcal{S} \hookrightarrow \{X^2 : X \in \mathcal{S}\} \\ & \mathcal{S} \leftarrow \mathcal{S} + \operatorname{span}\{X^2 : X \in \mathcal{S}\} \\ & \text{until converged.} \end{array}$$

```
minimize \dim S
subject to S \ni C, X_{C^{\perp}}, I
```

```
\mathcal{S} \leftarrow \operatorname{span}\{C, X_{\mathcal{C}^{\perp}}, I\}
                                                                                   repeat
\begin{array}{c|c} \mathcal{S} \supseteq P_{\mathcal{L}}(\mathcal{S}) & \mathcal{S} \leftarrow \mathcal{S} + P_{\mathcal{L}}(\mathcal{S}) \\ \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} & \mathcal{S} \leftarrow \mathcal{S} + \operatorname{span}\{X^2 : X \in \mathcal{S}\} \end{array}
                                                                                    until converged.
```

Properties of algorithm:

Optimal subspace contains each iterate (induction)

```
minimize \dim S
subject to S \ni C, X_{C^{\perp}}, I
```

```
\mathcal{S} \leftarrow \operatorname{span}\{C, X_{\mathcal{C}^{\perp}}, I\}
                                                                                   repeat
\begin{array}{c|c} \mathcal{S} \supseteq P_{\mathcal{L}}(\mathcal{S}) & \mathcal{S} \leftarrow \mathcal{S} + P_{\mathcal{L}}(\mathcal{S}) \\ \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} & \mathcal{S} \leftarrow \mathcal{S} + \operatorname{span}\{X^2 : X \in \mathcal{S}\} \end{array}
                                                                                    until converged.
```

Properties of algorithm:

- Optimal subspace contains each iterate (induction)
- Computes ascending chain of subspaces—terminates.

```
minimize \dim S
subject to S \ni C, X_{C^{\perp}}, I
```

```
\mathcal{S} \leftarrow \operatorname{span}\{C, X_{\mathcal{C}^{\perp}}, I\}
                                                                                   repeat
\begin{array}{c|c} \mathcal{S} \supseteq P_{\mathcal{L}}(\mathcal{S}) & \mathcal{S} \leftarrow \mathcal{S} + P_{\mathcal{L}}(\mathcal{S}) \\ \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} & \mathcal{S} \leftarrow \mathcal{S} + \operatorname{span}\{X^2 : X \in \mathcal{S}\} \end{array}
                                                                                    until converged.
```

Properties of algorithm:

- Optimal subspace contains each iterate (induction)
- Computes ascending chain of subspaces—terminates.
- At termination, subspace feasible; hence, optimal.

```
minimize \dim S
subject to S \ni C, X_{C^{\perp}}, I
```

```
\mathcal{S} \leftarrow \operatorname{span}\{C, X_{\mathcal{C}^{\perp}}, I\}
                                                                                   repeat
\begin{array}{c|c} \mathcal{S} \supseteq P_{\mathcal{L}}(\mathcal{S}) & \mathcal{S} \leftarrow \mathcal{S} + P_{\mathcal{L}}(\mathcal{S}) \\ \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} & \mathcal{S} \leftarrow \mathcal{S} + \operatorname{span}\{X^2 : X \in \mathcal{S}\} \end{array}
                                                                                    until converged.
```

Properties of algorithm:

- Optimal subspace contains each iterate (induction)
- Computes ascending chain of subspaces—terminates.
- At termination, subspace feasible; hence, optimal.

Properties of minimization problem:

Feasible set closed under intersection (lattice)

```
minimize \dim S
subject to S \ni C, X_{C^{\perp}}, I
```

```
\mathcal{S} \leftarrow \operatorname{span}\{C, X_{\mathcal{C}^{\perp}}, I\}
                                                                                   repeat
\begin{array}{c|c} \mathcal{S} \supseteq P_{\mathcal{L}}(\mathcal{S}) & \mathcal{S} \leftarrow \mathcal{S} + P_{\mathcal{L}}(\mathcal{S}) \\ \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} & \mathcal{S} \leftarrow \mathcal{S} + \operatorname{span}\{X^2 : X \in \mathcal{S}\} \end{array}
                                                                                    until converged.
```

Properties of algorithm:

- Optimal subspace contains each iterate (induction)
- Computes ascending chain of subspaces—terminates.
- At termination, subspace feasible; hence, optimal.

Properties of minimization problem:

- Feasible set closed under intersection (lattice)
- A unique solution.

Combinatorial descriptions

Great! Now, we can easily compute the optimal subspace \mathcal{S} .

Combinatorial descriptions

Great! Now, we can easily compute the optimal subspace S.

But, often want/need additional properties (e.g., "dense" subspaces may not be very efficient).

Can tradeoff dimension with sparsity of a basis?

Combinatorial descriptions

Great! Now, we can easily compute the optimal subspace S.

But, often want/need additional properties (e.g., "dense" subspaces may not be very efficient).

Can tradeoff dimension with sparsity of a basis?

Yes! Three kinds of sparse bases for S:

- *Partition* subspaces: defined by a partition of $[n] \times [n]$.
- Coordinate subspaces: defined by a sparsity pattern
- Combinatorial subspaces: orthogonal basis of 0/1 matrices

E.g.,

$$\begin{bmatrix} a & a & b \\ a & a & b \\ b & b & c \end{bmatrix} \qquad \text{vs.} \qquad \begin{bmatrix} a & b & 0 \\ b & c & 0 \\ 0 & 0 & d \end{bmatrix} \qquad \text{vs.} \qquad \begin{bmatrix} a & 0 & b \\ 0 & a & c \\ b & c & b \end{bmatrix}$$

The main algorithm can be adapted to compute the optimal subspace for each of these three cases.

The main algorithm can be adapted to compute the optimal subspace for each of these three cases.

Key property (again): lattice structure (closedness under intersection)

The main algorithm can be adapted to compute the optimal subspace for each of these three cases.

Key property (again): lattice structure (closedness under intersection)

E.g., for partition subspaces, instead of optimizing over lattice of subspaces, use the lattice of partitions:

```
 \begin{array}{lll} \text{minimize} & \dim \mathcal{S} & \mathcal{P} \leftarrow \operatorname{Part}\{\mathcal{C}, X_{\mathcal{L}^{\perp}}, I\} \\ \text{subject to} & \mathcal{S} \ni \mathcal{C}, X_{\mathcal{L}^{\perp}}, I & \textbf{repeat} \\ & \mathcal{S} \supseteq P_{\mathcal{L}}(\mathcal{S}) & \mathcal{P} \leftarrow \operatorname{refine}(\mathcal{P}, P_{\mathcal{L}}) \\ & \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} & \mathcal{P} \leftarrow \operatorname{refine}(\mathcal{P}, X \mapsto X^2) \\ & \mathcal{S} \text{ is a partition subspace} & \textbf{until} & \operatorname{converged}. \\ \end{array}
```

The main algorithm can be adapted to compute the optimal subspace for each of these three cases.

Key property (again): lattice structure (closedness under intersection)

E.g., for partition subspaces, instead of optimizing over lattice of subspaces, use the lattice of partitions:

```
 \begin{array}{lll} \text{minimize} & \dim \mathcal{S} & \mathcal{P} \leftarrow \operatorname{Part}\{\mathcal{C}, X_{\mathcal{L}^{\perp}}, I\} \\ \text{subject to} & \mathcal{S} \ni \mathcal{C}, X_{\mathcal{L}^{\perp}}, I & \textbf{repeat} \\ & \mathcal{S} \supseteq P_{\mathcal{L}}(\mathcal{S}) & \mathcal{P} \leftarrow \operatorname{refine}(\mathcal{P}, P_{\mathcal{L}}) \\ & \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} & \mathcal{P} \leftarrow \operatorname{refine}(\mathcal{P}, X \mapsto X^2) \\ & \mathcal{S} \text{ is a partition subspace} & \textbf{until} & \operatorname{converged}. \\ \end{array}
```

Great! But there's more...

Decomposition via Jordan algebras

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_+} \langle C, X \rangle$, we've found a subspace invariant under $X \mapsto X^2$ containing optimal solutions:

Decomposition via Jordan algebras

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_+} \langle C, X \rangle$, we've found a subspace invariant under $X \mapsto X^2$ containing optimal solutions:

$$\mathcal{S} \longrightarrow \mathcal{S}_{+}^{n}$$
 opt. solns \longrightarrow
$$\mathcal{S} \supseteq \{X^{2} : X \in \mathcal{S}\}$$

• Subspaces invariant under $X \mapsto X^2$ have decomposition

$$\mathcal{S} = Q \left(egin{array}{cccc} \mathcal{S}_1 & 0 & \dots & 0 \\ 0 & \mathcal{S}_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \mathcal{S}_m \end{array}
ight) Q^T, \quad egin{array}{c} \textit{S}_i \text{ are simple Jordan} \\ \textit{algebras} \end{array}$$

Decomposition via Jordan algebras

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_+} \langle C, X \rangle$, we've found a subspace invariant under $X \mapsto X^2$ containing optimal solutions:

$$\mathcal{S} \longrightarrow \mathcal{S}^n_+$$
opt. solns \longrightarrow

$$\mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\}$$

• Subspaces invariant under $X \mapsto X^2$ have decomposition

$$\mathcal{S} = Q \left(egin{array}{cccc} \mathcal{S}_1 & 0 & \dots & 0 \\ 0 & \mathcal{S}_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \mathcal{S}_m \end{array}
ight) Q^T, \quad egin{array}{c} \mathcal{S}_i ext{ are simple Jordan} \\ \mathit{algebras} \end{array}$$

 Number of distinct eigenvalues of generic element equals rank of S_i—a complexity measure.

Minimizing dimension optimizes decomposition

```
\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S}\ni X_{\mathcal{L}^\perp}, C, I \\ & \mathcal{S}\supseteq P_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S}\supseteq \{X^2: X\in \mathcal{S}\}, \end{array}
```

All feasible subspaces have decomp. $S = \bigoplus_{i=1}^{d_S} S_i$. In what sense does solution S^* optimize the ranks of each S_i ?

Minimizing dimension optimizes decomposition

```
 \begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S}\ni X_{\mathcal{L}^\perp}, \, C, \, I \\ & \mathcal{S}\supseteq P_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S}\supseteq \{X^2: X\in \mathcal{S}\}, \end{array}
```

All feasible subspaces have decomp. $S = \bigoplus_{i=1}^{d_S} S_i$. In what sense does solution S^* optimize the ranks of each S_i ?

Thm. (Permenter-P.):

• S^* minimizes $\sum_i \operatorname{rank} S_i$ and $\operatorname{max}_i \operatorname{rank} S_i$

Minimizing dimension optimizes decomposition

$$\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S}\ni X_{\mathcal{L}^\perp}, \mathcal{C}, I \\ & \mathcal{S}\supseteq P_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S}\supseteq \{X^2: X\in \mathcal{S}\}, \end{array}$$

All feasible subspaces have decomp. $S = \bigoplus_{i=1}^{d_S} S_i$. In what sense does solution S^* optimize the ranks of each S_i ?

Thm. (Permenter-P.):

- S^* minimizes $\sum_i \operatorname{rank} S_i$ and $\max_i \operatorname{rank} S_i$
- *Majorization* inequalities hold, i.e., for each $m \ge 1$

$$\sum_{i=1}^{m} \operatorname{rank} \mathcal{S}_{i}^{*} \leq \sum_{i=1}^{m} \operatorname{rank} \mathcal{S}_{i}$$

(ranks sorted in decreasing order)

Majorization example

Subspaces (parametrized by u_i and v_i) and their rank vectors

$$\begin{pmatrix} u_1 & u_2 & 0 & 0 & 0 \\ u_2 & u_3 & 0 & 0 & 0 \\ 0 & 0 & u_4 & 0 & 0 \\ 0 & 0 & 0 & u_5 & u_6 \\ 0 & 0 & 0 & u_6 & u_7 \end{pmatrix} \qquad \begin{pmatrix} v_1 & v_2 & 0 & 0 & 0 \\ v_2 & v_3 & 0 & 0 & 0 \\ 0 & 0 & v_4 & v_5 & v_6 \\ 0 & 0 & v_5 & v_7 & v_8 \\ 0 & 0 & v_6 & v_8 & v_9 \end{pmatrix}$$

$$r_u = (2, 1, 2)$$

$$\begin{pmatrix} v_1 & v_2 & 0 & 0 & 0 \\ v_2 & v_3 & 0 & 0 & 0 \\ 0 & 0 & v_4 & v_5 & v_6 \\ 0 & 0 & v_5 & v_7 & v_8 \\ 0 & 0 & v_6 & v_8 & v_9 \end{pmatrix}$$

$$r_{v}=(2,3)$$

Majorization example

Subspaces (parametrized by u_i and v_i) and their rank vectors

$$\begin{pmatrix} u_1 & u_2 & 0 & 0 & 0 \\ u_2 & u_3 & 0 & 0 & 0 \\ 0 & 0 & u_4 & 0 & 0 \\ 0 & 0 & 0 & u_5 & u_6 \\ 0 & 0 & 0 & u_6 & u_7 \end{pmatrix} \qquad \begin{pmatrix} v_1 & v_2 & 0 & 0 & 0 \\ v_2 & v_3 & 0 & 0 & 0 \\ 0 & 0 & v_4 & v_5 & v_6 \\ 0 & 0 & v_5 & v_7 & v_8 \\ 0 & 0 & v_6 & v_8 & v_9 \end{pmatrix}$$

Vector
$$r'_u = (2, 2, 1)$$
 majorized by $r'_v = (3, 2, 0)$:

$$2 \le 3$$
, $2+2 \le 3+2$, $2+2+1 \le 3+2+0$

Jordan algebras

Jordan algebras are commutative algebras satisfying Jordan identity

$$(X\circ Y)\circ X^2=X\circ (Y\circ X^2)$$

• The vector space \mathbb{S}^n a Jordan algebra if equipped with product

$$X\circ Y:=\frac{1}{2}(XY+YX)$$

• The *subalgebras* of \mathbb{S}^n precisely the sets closed under squaring map $X \mapsto X^2$ since

$$XY + YX = (X + Y)^2 - X^2 - Y^2$$
.

• Structure theorem of Jordan-von Neumann-Wigner describes subalgebras of \mathbb{S}^n

Decomposition of $S \cap \mathbb{S}^n_+$

If $S \subset \mathbb{S}^n$ a Jordan subalgebra, it equals direct-sum $\bigoplus_{i=1}^m S_i$, where each S_i is isomorphic to one of the following:

- Algebra of Hermitian matrices with real, complex or quaternion entries
- A spin-factor algebra

Implies *cone-of-squares* $S \cap \mathbb{S}^n_+$ isomorphic to product of

- PSD cones with real/complex/quaternion entries
- Lorentz cones

Yields reformulation of original SDP over this product

minimize Tr
$$CX$$
 subject to $X \in A \cap T(K_1 \times \cdots \times K_m)$

Computational results

Comparison with reduction method of de Klerk '10 survey (generating *-algebras from data):

instance	\mathcal{S}^*	$\mathcal{S}_{ extit{data}}$
hamming_7_5_6	5	8256
hamming_8_3_4	5	32896
hamming_9_5_6	6	131328
hamming_9_8	6	131328
hamming_10_2	7	524800

- Table list dimension of our subspace $S^* \subseteq \mathbb{S}^n$ and subspace $S_{data} \subseteq \mathbb{S}^n$ found by generating *-algebra.
- Decomposing S^* yields a linear program.

Results: SOSOPT (Seiler '13) Demo scripts

Script Name	n (before)	n (after)
sosoptdemo2	13, 3	$3,2\times3,1\times7$
sosoptdemo4	35	5 × 5, 1 × 10
gsosoptdemo1	9,5	6, 3 × 2, 2
IOGainDemo_3	15, 8	10, 5 × 2, 3
Chesi(1 2)_IterationWithVlin	9,5	6, 3 × 2, 2
Chesi3_GlobalStability	14, 5	8, 6, 3, 2
Chesi(3 4)_IterationWithVlin	9,5	6, 3 × 2, 2
Chesi(5 6)_Bootstrap	19, 9	13, 6 × 2, 3
Chesi(5 6)_IterationWithVlin	19, 9	$13, 6 \times 2, 3$
Coutinho3_IterationWithVlin	9,5	6, 3 × 2, 2
HachichoTibken_Bootstrap	19, 9	12, 7, 6, 3
HachichoTibken_IterationWithVlin	19, 9	12, 7, 6, 3
Hahn_IterationWithVlin	9,5	6, 3, 3, 2
KuChen_IterationWithVlin	19, 9	$13, 6 \times 2, 3$
Parrilo1_GlobalStabilityWithVec	3, 2	2, 1 × 3
Parrilo2_GlobalStabilityWithMat	3, 2	2, 1 × 3
VDP_IterationWithVball	5, 4	3 × 2, 2, 1
VDP_IterationWithVlin	9,5	6, 3 × 2, 2
VDP_LinearizedLyap	9,5	6, 3 × 2, 2
VannelliVidyasagar2_Bootstrap	19, 9	13, 6 × 2, 3
VannelliVidyasagar2_IterationWithVlin	19, 9	13, 6 × 2, 3
VincentGrantham_IterationWithVlin	9,5	6, 3 × 2, 2
WTBenchmark_IterationWithVlin	19, 9	13,6 × 2,3

Conclusions

New reduction method for SDP.

- Generalizes symmetry reduction and *-algebra-methods
- Fully algorithmic, don't need to compute automorphisms!
- Yields optimal 'block-diagonalization' (majorization)
- Can exploit combinatorial description of subspace
- Through Jordan algebra theory, extends to LP/SOCP/...

Conclusions

New reduction method for SDP.

- Generalizes symmetry reduction and *-algebra-methods
- Fully algorithmic, don't need to compute automorphisms!
- Yields optimal 'block-diagonalization' (majorization)
- Can exploit combinatorial description of subspace
- Through Jordan algebra theory, extends to LP/SOCP/...

Preprint at arXiv:1608.02090.

Conclusions

New reduction method for SDP.

- Generalizes symmetry reduction and *-algebra-methods
- Fully algorithmic, don't need to compute automorphisms!
- Yields optimal 'block-diagonalization' (majorization)
- Can exploit combinatorial description of subspace
- Through Jordan algebra theory, extends to LP/SOCP/...

Preprint at arXiv:1608.02090.

Thanks for your attention!