The Interplay between Sparsity and Big Data in

Systems Theory

M. Sznaier
Robust Systems Lab
ECE, Northeastern University

Motivation 1: SysId

Goal: Find a low order, stable model

Motivation 2: distributed sensing \& control

Goal: impose a sparse structure

Motivation 3: decision making

How do we make (provably) correct decisions in a "data deluged" environments? (a hidden hybrid SysId problem)

Hard or Easy?

- Claim 1: These problems are (NP!) hard

Hard or Easy?

- Claim 1: These problems are (NP!) hard
- Claim 2: These problems can be solved in polynomial time

Hard or Easy?

- Claim 1: These problems are (NP!) hard
- Claim 2: These problems can be solved in polynomial time

Both can't be right, can they?

Hard or Easy?

- Claim 1: These problems are generically NP-hard
- Claim 2: Many of these problems can be solved in polynomial time

Hard or Easy?

- Q: What makes a problem easy?
- A: Convexity?

Hard or Easy?

- Q: What makes a problem easy?
- A: Convexity? Not Necessarily!

Optimization over co-Positive matrices is NP-hard

Hard or Easy?

- Q: What makes a problem easy?
- A: Convexity + Self-Concordance?

Hard or Easy?

- Q: What makes a problem easy?
- A: Convexity + Self-Concordance? Not Necessarily!

Horizon	ADMM (secs)	SDP solver(secs)
280	1071.8	4177.0
350	1828.0	12686.9
420	2657.7	out of memory

In (convex) SysId Big Data may be as low as 10^{2}

Hard or Easy?

- Q: What makes a problem hard?
- A: Lack of Convexity?

Hard or Easy?

- Q: What makes a problem hard?
- A: Lack of Convexity? Not Necessarily!

$$
\min \sum \mathbf{c}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}+\mathbf{1}} \text { subject to } \mathbf{x}_{\mathbf{i}}= \pm \mathbf{1}
$$

Hard or Easy?

- Q: What makes a problem hard/easy?
- A: Structure
- Self Similarity
- Sparsity
- Both observed in many practical problems
- Often they induces "good" convexity
- Exploited in Machine Learning for "static" problems

Hard or Easy?

- Challenge
- Separate easy/hard problems
- Understand where does the complexity come from
- Use this understanding to design "easy" problems

Main point of this talk: These issues are related to the sparsity structure of the problem

Intuition: look at QCQP

$$
\begin{gathered}
p^{*}=\min _{x} \mathbf{x}^{\prime} \mathbf{Q}_{\mathbf{o}} \mathbf{x} \text { s.t. } \mathbf{x}^{\prime} \mathbf{Q}_{\mathbf{i}} \mathbf{x} \leq 0 i=1, . . n \\
p^{*}=\min _{x} \operatorname{Trace}\left(\mathbf{Q}_{\mathbf{o}} \mathbf{x} \mathbf{x}^{\prime}\right) \text { s.t. } \operatorname{Trace}\left(\mathbf{Q}_{\mathbf{i}} \mathbf{x} \mathbf{x}^{\prime}\right) \leq 0 i=1, . . n \\
p_{S D P}=\min _{x} \operatorname{Trace}\left(\mathbf{Q}_{\mathbf{o}} \mathbf{X}\right) \text { s.t. } \operatorname{Trace}\left(\mathbf{Q}_{\mathbf{i}} \mathbf{X}\right) \leq 0, \mathbf{X} \succeq 0
\end{gathered}
$$

Clearly $\mathrm{p}_{\mathrm{SDP}} \leq \mathrm{p}^{*}$ and $\mathrm{p}_{\mathrm{SDP}}=\mathrm{p}^{*}$ if $\operatorname{rank}(\mathrm{X})=1$

Intuition: look at QCQP

$$
\begin{gathered}
p^{*}=\min _{x} \mathbf{x}^{\prime} \mathbf{Q}_{\mathbf{o}} \mathbf{x} \text { s.t. } \mathbf{x}^{\prime} \mathbf{Q}_{\mathbf{i}} \mathbf{x} \leq 0 i=1, . . n \\
p^{*}=\min _{x} \operatorname{Trace}\left(\mathbf{Q}_{\mathbf{o}} \mathbf{x} \mathbf{x}^{\prime}\right) \text { s.t. } \operatorname{Trace}\left(\mathbf{Q}_{\mathbf{i}} \mathbf{x x ^ { \prime }}\right) \leq 0 i=1, . . n \\
p_{S D P}=\min _{x} \operatorname{Trace}\left(\mathbf{Q}_{\mathbf{o}} \mathbf{X}\right) \text { s.t. } \operatorname{Trace}\left(\mathbf{Q}_{\mathbf{i}} \mathbf{X}\right) \leq 0, \mathbf{X} \succeq 0
\end{gathered}
$$

Clearly $\mathrm{p}_{\mathrm{SDP}} \leq \mathrm{p}^{*}$ and $\mathrm{p}_{\mathrm{SDP}}=\mathrm{p}^{*}$ if $\operatorname{rank}(\mathrm{X})=1$

Q: Can we get this for (almost) free?

Exploiting sparsity in QCQP

- Complexity related to the topology of a graph:
- Each vertex corresponds to a variable
- There is an edge (i,j) if there are terms involving $\mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{j}}$

Exploiting sparsity in QCQP

- If the graph is a tree, then the SDP relaxation is exact
J. Lavaei, 2014

Exploiting sparsity in QCQP

- If the graph is a tree, then the SOCP relaxation is exact
- Example: $\min \sum \mathrm{c}_{\mathbf{i}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+1}$ subject to $\mathrm{x}_{\mathrm{i}}= \pm 1$

Sparse polynomial optimization

- Many problems have a sparse structure (running intersection)

$$
\begin{aligned}
& \min _{x} p_{1}(x)+p_{2}(x)+\ldots p_{m}(x) \text { s.t. } \\
& f_{1}\left(x^{\alpha}\right) \leq 0 \\
& f_{2}\left(x^{\alpha}\right) \leq 0 \\
& \quad \vdots \\
& f_{m}\left(x^{\alpha}\right) \leq 0
\end{aligned}
$$

where each $p_{i}(),. f_{i}($.$) depends only on a subset of variables such that$

$$
\begin{aligned}
& P_{1} \\
& f_{1} \\
& x_{1}, x_{2}, . . x_{k^{\circ}} \cdot x_{d}, x_{d+1}, \ldots x_{d+k}, \ldots \ldots \ldots . . x_{n-d+1}, x_{n}
\end{aligned}
$$

Sparse polynomial optimization

- Many problems have a sparse structure (running intersection)

$$
\begin{aligned}
& \min _{x} p_{1}(x)+p_{2}(x)+\ldots p_{m}(x) \text { s.t. } \\
& \left.f_{1}(x)^{\alpha}\right) \leq 0 \\
& f_{2}\left(x^{\alpha}\right) \leq 0 \\
& \vdots \\
& f_{m}\left(x^{\alpha}\right) \leq 0
\end{aligned}
$$

where each $p_{i}(),. f_{i}($.$) depends only on a subset of variables such that$

$$
\begin{aligned}
& P_{1} \\
& f_{1} \\
& x_{1}, x_{2}, \ldots x_{k} \cdot x_{d}, x_{d+1}, \ldots x_{d+k}, \ldots \ldots \ldots . . x_{n-d+1}, x_{n}
\end{aligned}
$$

Sparse polynomial optimization

- Many problems have a sparse structure (running intersection)

$$
\begin{aligned}
& \min _{x} p_{1}(x)-p_{2}(x)+\ldots p_{m}(x) \text { s.t. } \\
& f_{1}\left(x^{\alpha}\right) \leq 0 \\
& f_{2}\left(x^{\alpha}\right) \leq 0 \\
& \vdots \\
& f_{m}\left(x^{\alpha}\right) \leq 0
\end{aligned}
$$

where each $p_{i}(),. f_{i}($.$) depends only on a subset of variables such that$

$$
\begin{array}{ll}
P_{1} & P_{2} \\
f_{1} & f_{2}
\end{array}
$$

$$
x_{1}, x_{2}, \cdot x_{k} \cdot x_{d d}, x_{d+1}, \ldots x_{d+k} \cdots \ldots \ldots . . . x_{n-d+1}, x_{n}
$$

Sparse polynomial optimization

- Running intersection is related to cliques in the (chordal completion of the) csp graph

Sparse polynomial optimization

- Running intersection is related to cliques in the (chordal completion of the) csp graph

Sparse polynomial optimization

- Running intersection is related to cliques in the (chordal completion of the) csp graph

Connecting Information, Sparsity \& Dynamics

Where should we pay attention?:

Features (edges, regions, etc.) are important.

Where should we pay attention?:

Dynamics are important too!.

Sparse signal recovery:

- Strong prior:
- Signal has a sparse representation

$$
f=\sum c_{i} \psi_{i}
$$

only a few $\mathrm{c}_{\mathrm{i}} \neq 0$

- Signal Recovery:
- "sparsify" the coefficients
$\min \left\|\left[c_{1}, \ldots, c_{n}\right]\right\|_{o}$ subject to : $f\left(x_{i}\right)=y_{i}$

Sparse signal recovery:

- Strong prior:
- Signal has a sparse representation
$f=\sum c_{i} \psi_{i}$
only a few $\mathrm{c}_{\mathrm{i}} \neq 0$
- Signal Recovery:
- "sparsify" the coefficients
$\min \left\|\left[c_{1}, \ldots, c_{n}\right]\right\|_{o}$
subject to : $f\left(x_{i}\right)=y_{i}$

Sparse information extraction

- Strong prior:
- Actionable information is generated by low complexity dynamical systems.
- Information extraction:
- "sparsify" the dynamics $\min _{\mathbf{y}}\left\{\operatorname{rank}[\mathbf{M}(\mathbf{y})]+\lambda\|\mathbf{E}(\mathbf{y})\|_{o}\right\}$ y
- Where $M(),. E($.$) are affine in y$

Example: Solving "Temporal Puzzles"

Example: Solving "Temporal Puzzles"

D is a suitably chosen
dynamic dictionary

Example: Solving "Temporal Puzzles"

Dynamic
sparsification

Information Extraction as an ID problem

Information extraction as an Id problem:

- Model data streams as outputs of switched systems
- "Interesting" events \Leftrightarrow Model invariant(s) changes
- An identification/model (in)validation problem.

SARX Id problem:

- Given:
- Bounds on noise ($\|\eta\|_{\infty} \leq \varepsilon$), sub-system order $\left(n_{0}\right)$
- Input/output data (u,y)
- Number of sub-models
- Find:
- A piecewise affine model such that:

$$
y_{t}=\sum_{i=1}^{n_{a}} a_{i}\left(\sigma_{t}\right) y_{t-i}+\sum_{i=1}^{n_{c}} c_{i}\left(\sigma_{t}\right) u_{t-i}+f\left(\sigma_{t}\right)+\eta_{t}
$$

- Given \mathbf{N} points in $\mathbf{R}^{\mathbf{n}}$, fit them to hyperplanes
- "Chicken and egg" problem
- Do not known the point "labels" NP Hard !
- Do not know the hyperplanes.

Reformulation:

$$
\begin{array}{r}
\mathbf{y}_{t}+\boldsymbol{\eta}_{t}-\sum_{i=1}^{n_{a}} \mathbf{A}_{i}\left(\sigma_{1}\right) \mathbf{y}_{t-i}-\sum_{i=1}^{n_{c}} \mathbf{C}_{i}\left(\sigma_{1}\right) \mathbf{u}_{t-i}=0 \\
\quad \text { or } \\
\mathbf{y}_{t}+\boldsymbol{\eta}_{t}-\sum_{i=1}^{n_{a}} \mathbf{A}_{i}\left(\sigma_{2}\right) \mathbf{y}_{t-i}-\sum_{i=1}^{n_{c}} \mathbf{C}_{i}\left(\sigma_{2}\right) \mathbf{u}_{t-i}=0
\end{array}
$$

QCQP reformulation:

$\mathbf{s}_{\mathbf{1}, \mathbf{t}}\left(\mathbf{y}_{t}+\boldsymbol{\eta}_{t}-\sum_{i=1}^{n_{a}} \mathbf{A}_{i}\left(\sigma_{1}\right) \mathbf{y}_{t-i}-\sum_{i=1}^{n_{c}} \mathbf{C}_{i}\left(\sigma_{1}\right) \mathbf{u}_{t-i}\right)=0$
and
$\mathbf{s}_{\mathbf{2}, \mathbf{t}}\left(\mathbf{y}_{t}+\boldsymbol{\eta}_{t}-\sum_{i=1}^{n_{a}} \mathbf{A}_{i}\left(\sigma_{2}\right) \mathbf{y}_{t-i}-\sum_{i=1}^{n_{c}} \mathbf{C}_{i}\left(\sigma_{2}\right) \mathbf{u}_{t-i}\right)=0$
Subject to: $\quad s_{i, t}=s_{i, t}^{2}$, and $\sum_{i} s_{i, t}=1$

$$
s \in\{0,1\}
$$

QCQP reformulation:

$$
\left\{\begin{array}{l}
\left|s_{i, j} \mathbf{r}_{i}^{T} \mathbf{x}_{j}\right| \leq \epsilon s_{i, j}, \forall_{i=1}^{N_{s}} \forall_{j=1}^{N_{p}} \\
s_{i, j}^{2}=s_{i, j}, \forall_{i=1}^{N_{s}} \forall_{j=1}^{N_{p}} \\
\Sigma_{i=1}^{N_{s}} s_{i, j}=1, \forall_{j=1}^{N_{p}} \\
\mathbf{r}_{i}^{T} \mathbf{r}_{i}=1, \forall_{i=1}^{N_{s}} \\
\mathbf{r}_{1}(1) \geq \mathbf{r}_{2}(1) \geq \cdots \geq \mathbf{r}_{N_{s}}(1) \geq 0
\end{array}\right.
$$

QCQP reformulation:

$$
\left\{\begin{array}{l}
\left|s_{i, j} \mathbf{r}_{i}^{T} \mathbf{x}_{j}\right| \leq \epsilon s_{i, j}, \forall_{i=1}^{N_{s}} \forall_{j=1}^{N_{p}} \\
s_{i, j}^{2}=s_{i, j}, \forall_{i=1}^{N_{s}} \forall_{j=1}^{N_{p}} \\
\Sigma_{i=1}^{N_{s}} s_{i, j}=1, \forall_{j=1}^{N_{p}} \\
\mathbf{r}_{i}^{T} \mathbf{r}_{i}=1, \forall_{i=1}^{N_{s}} \\
\mathbf{r}_{1}(1) \geq \mathbf{r}_{2}(1) \geq \cdots \geq \mathbf{r}_{N_{s}}(1) \geq 0
\end{array}\right.
$$

QCQP reformulation:

$$
\begin{cases}\left|s_{i, j} \mathbf{r}_{i}^{T} \mathbf{x}_{\mathbf{j}}\right| \leq \epsilon s_{i, j}, \forall_{i=1}^{N_{s}} \forall_{j=1}^{N_{p}} & \mathbf{x}_{j} \text { is an inlier in } \mathcal{S}_{i} \text { if } s_{i j}=1 \\ s_{i, j}^{2}=s_{i, j}, \forall_{i=1}^{N_{s}} \forall_{j=1}^{N_{p}} & s_{i j} \in\{0,1\} \\ \Sigma_{i=1}^{N_{s}} s_{i, j}=1, \forall_{j=1}^{N_{p}} & \\ \mathbf{r}_{i}^{T} \mathbf{r}_{i}=1, \forall_{i=1}^{N_{s}} & \\ \mathbf{r}_{1}(1) \geq \mathbf{r}_{2}(1) \geq \cdots \geq \mathbf{r}_{N_{s}}(1) \geq 0 & \end{cases}
$$

QCQP reformulation:

$$
\begin{cases}\left|s_{i, j} \mathbf{r}_{i}^{T} \mathbf{x}_{j}\right| \leq \epsilon s_{i, j}, \forall_{i=1}^{N_{s}} \forall_{j=1}^{N_{p}} & \mathbf{x}_{j} \text { is an inlier in } \mathcal{S}_{i} \text { if } s_{i j}=1 \\ s_{i, j}^{2}=s_{i, j}, \forall_{i=1}^{N_{s}} \forall_{j=1}^{N_{p}} & s_{i j} \in\{0,1\} \\ \Sigma_{i=1}^{N_{s}} s_{i, j}=1, \forall_{j=1}^{N_{p}} & \text { each sample is assigned } \\ & \text { to one subspace } \\ \mathbf{r}_{i}^{T} \mathbf{r}_{i}=1, \forall_{i=1}^{N_{s}} & \\ \mathbf{r}_{1}(1) \geq \mathbf{r}_{2}(1) \geq \cdots \geq \mathbf{r}_{N_{s}}(1) \geq 0 & \end{cases}
$$

QCQP reformulation:

$$
\left\{\begin{array}{l}
\left|s_{i, j} \mathbf{r}_{i}^{T} \mathbf{x}_{j}\right| \leq \epsilon s_{i, j}, \forall_{i=1}^{N_{s}} \forall_{j=1}^{N_{p}} \\
s_{i, j}^{2}=s_{i, j}, \forall_{i=1}^{N_{s}} \forall_{j=1}^{N_{p}} \\
\sum_{i=1}^{N_{s}} s_{i, j}=1, \forall_{j=1}^{N_{p}} \\
\mathbf{r}_{i}^{T} \mathbf{r}_{i}=1, \forall_{i=1}^{N_{s}} \\
\mathbf{r}_{1}(1) \geq \mathbf{r}_{2}(1) \geq \cdots \geq \mathbf{r}_{N_{s}}(1) \geq 0
\end{array}\right.
$$

\mathbf{x}_{j} is an inlier in \mathcal{S}_{i} if $s_{i j}=1$
$s_{i j} \in\{0,1\}$
each sample is assigned to one subspace

Hidden Sparse Structure:

Model parameters

$$
\mathbf{S}_{1, \mathbf{t}}\left(\mathbf{y}_{t}+\boldsymbol{\eta}_{t}-\sum_{i=1}^{n_{a}} \mathbf{A}_{i}\left(\sigma_{1}\right) \mathbf{y}_{t-i}-\sum_{i=1}^{n_{c}} \mathbf{C}_{i}\left(\sigma_{1}\right) \mathbf{u}_{t-i}\right)=0
$$

Hidden Sparse Structure:

Complexity determined by the order of the model.

Linear in the number of data points

Exploiting the Sparse Structure:

Original problem:
Scales as $\mathrm{O}\left(\left(\mathrm{N}_{\mathrm{p}} \mathrm{N}_{\mathrm{s}}\right)^{6}\right)$

$$
\left\{\begin{array}{l}
P_{0}:\left\{\begin{array}{l}
\mathbf{r}_{i}^{T} \mathbf{r}_{i}=1, \forall_{i=1}^{N_{s}} \\
\mathbf{r}_{1}(1) \geq \mathbf{r}_{2}(1) \geq \cdots \geq \mathbf{r}_{N_{s}}(1) \geq 0
\end{array}\right. \\
\forall_{j=1}^{N_{p}}: P_{j}:\left\{\begin{array}{l}
\left|s_{i, j} \mathbf{r}_{i}^{T} \mathbf{x}_{j}\right| \leq \epsilon s_{i, j}, \forall_{i=1}^{N_{s}} \\
s_{i, j}^{2}=s_{i, j}, \forall_{i=1}^{N_{s}} \\
\sum_{i=1}^{N_{s}} s_{i, j}=1
\end{array}\right.
\end{array}\right.
$$

Reduced problem: Scales as $\mathbf{O}\left(\mathbf{N}_{\mathrm{p}}\left(\mathbf{N}_{\mathrm{s}}\right)^{6}\right)$

$$
\left\{\begin{array} { l }
{ \operatorname { T r } (\overline { \mathbf { Q } } _ { k , 0 } \mathbf { M } _ { 0 }) \leq 0 , \forall _ { k = 1 } ^ { K _ { 0 } } } \\
{ \mathbf { M } _ { 0 } \succeq 0 , \mathbf { M } _ { 0 } (1 , 1) = 1 } \\
{ \operatorname { r a n k } (\mathbf { M } _ { 0 }) = 1 }
\end{array} \left\{\begin{array}{l}
\operatorname{Tr}\left(\overline{\mathbf{Q}}_{k, j} \mathbf{M}_{j}\right) \leq 0, \forall_{k=1}^{K_{j}} \\
\forall_{j=1}^{N_{p}}:\left\{\begin{array}{l}
\mathbf{M}_{j} \succeq \mathbf{0}, \mathbf{M}_{j}(1,1)=1 \\
\mathbf{M}_{j}\left(1: n N_{s}+1,1: n N_{s}+1\right)=\mathbf{M}_{0}
\end{array}\right.
\end{array}\right.\right.
$$

Linear in the number of data points

Exploiting the Sparse Structure:

Original problem:
Scales as $\mathrm{O}\left(\left(\mathrm{N}_{\mathrm{p}} \mathrm{N}_{\mathrm{s}}\right)^{6}\right)$

$$
\left\{\begin{array}{l}
P_{0}:\left\{\begin{array}{l}
\mathbf{r}_{i}^{T} \mathbf{r}_{i}=1, \forall_{i=1}^{N_{s}} \\
\mathbf{r}_{1}(1) \geq \mathbf{r}_{2}(1) \geq \cdots \geq \mathbf{r}_{N_{s}}(1) \geq 0
\end{array}\right. \\
\forall_{j=1}^{N_{p}}: P_{j}:\left\{\begin{array}{l}
\left|s_{i, j} \mathbf{r}_{i}^{T} \mathbf{x}_{j}\right| \leq \epsilon s_{i, j}, \forall_{i=1}^{N_{s}} \\
s_{i, j}^{2}=s_{i, j}, \forall_{i=1}^{N_{s}} \\
\sum_{i=1}^{N_{s}^{s} s_{i, j}=1}
\end{array}\right.
\end{array}\right.
$$

Reduced problem: Scales as $\mathbf{O}\left(\mathbf{N}_{\mathrm{p}}\left(\mathbf{N}_{\mathrm{s}}\right)^{6}\right)$
$\left\{\begin{array}{l}\operatorname{Tr}\left(\overline{\mathbf{Q}}_{k, 0} \mathbf{M}_{0}\right) \leq 0, \forall_{k=1}^{K_{0}} \\ \mathbf{M}_{0} \succ 0, \mathbf{M}_{0}(1,1)=1\end{array}\left\{\begin{array}{l}\operatorname{rank}\left(\mathbf{M}_{0}\right)=1\end{array}, \begin{array}{l}V_{j=1}^{N_{p}}:\left\{\begin{array}{l}\operatorname{Tr}\left(\overline{\mathbf{Q}}_{k, j} \mathbf{M}_{j}\right) \leq 0, \forall_{k=1}^{K_{j}} \\ \mathbf{M}_{j} \succeq 0, \mathbf{M}_{j}(1,1)=1 \\ \mathbf{M}_{j}\left(1: n N_{s}+1,1: n N_{s}+1\right)=\mathbf{M}_{0}\end{array}\right.\end{array}\right.\right.$

Example: Human Activity Analysis

WALK BEND WALK

(In)Validating SARX Models

Model (In)validation of SARX Systems

- Given:
- A nominal switched model of the form:

$$
\begin{aligned}
& \mathbf{y}_{t}=\sum_{k=1}^{n_{a}} \mathbf{A}_{k}\left(\sigma_{t}\right) \mathbf{y}_{t-k}+\sum_{k=1}^{n_{c}} \mathbf{C}_{k}\left(\sigma_{t}\right) \mathbf{u}_{t-k}+\mathbf{f}\left(\sigma_{t}\right) \\
& \tilde{\mathbf{y}}_{t}=\mathbf{y}_{t}+\boldsymbol{\eta}_{t}
\end{aligned}
$$

- A bound on the noise $\left(\|\eta\|_{\infty} \leq \varepsilon\right)$
- Experimental Input/Output Data $\left\{\mathbf{u}_{t}, \tilde{\mathbf{y}}_{t}\right\}_{t=t_{0}}^{T}$
- Determine:
- whether there exist noise and switching sequences consistent with a priori information and experimental data

Model (In)validation of SARX Systems

- Given:
- A nominal switched model of the form:

$$
\begin{aligned}
& \mathbf{y}_{t}=\sum_{k=1}^{n_{a}} \mathbf{A}_{k}\left(\sigma_{t}\right) \mathbf{y}_{t-k}+\sum_{k=1}^{n_{c}} \mathbf{C}_{k}\left(\sigma_{t}\right) \mathbf{u}_{t-k}+\mathbf{f}\left(\sigma_{t}\right) \\
& \tilde{\mathbf{y}}_{t}=\mathbf{y}_{t}+\boldsymbol{\eta}_{t}
\end{aligned}
$$

- A bound on the noise ($\|\eta\|_{\infty} \leq \varepsilon$)
- Experimental Input/Output Data $\left\{\mathbf{u}_{t}, \tilde{\mathbf{y}}_{t}\right\}_{t=t_{0}}^{T}$
- Determine:
- whether there exist noise and switching sequences consistent with a priori information and experimenta data

Reduces to SDP via
Putinar's Positivstellensatz

Model (In)validation of SARX Systems

- Given:
- A nominal switched model of the form:

$$
\begin{aligned}
& \mathbf{y}_{t}=\sum_{k=1}^{n_{a}} \mathbf{A}_{k}\left(\sigma_{t}\right) \mathbf{y}_{t-k}+\sum_{k=1}^{n_{c}} \mathbf{C}_{k}\left(\sigma_{t}\right) \mathbf{u}_{t-k}+\mathbf{f}\left(\sigma_{t}\right) \\
& \tilde{\mathbf{y}}_{t}=\mathbf{y}_{t}+\boldsymbol{\eta}_{t}
\end{aligned}
$$

- A bound on the noise ($\|\boldsymbol{n}\|_{\infty} \leq \varepsilon$)
- Experimental Input/Output Data $\left\{\mathbf{u}_{t}, \tilde{\mathbf{y}}_{t}\right\}_{t=t_{0}}^{T}$
- Determine:
- whether there exist noise and switching sequences consistent with a priori information and experimenta data

Reduces to SDP via
Putinar's Positivstellensatz

Guaranteed convergence for the $n=T$ relaxation

(In)validation Certificates:

- The model is invalid if and only if

$$
d^{*} \doteq\left\{\begin{array}{l}
\min _{\mathbf{s}, \boldsymbol{\eta}} \sum_{t=1}^{T} \sum_{i=1}^{n_{s}} e_{i, t}^{2} \\
\operatorname{subject~to:~} \\
\mathbf{s}_{\mathbf{i}, \mathbf{t}}\left(\mathbf{g}_{i, t}+\mathbf{h}_{i, t} \boldsymbol{\eta}_{t-n_{a}: t}\right)=\mathbf{e}_{i, t} \\
\sum_{i} s_{i, t}=1 \\
s_{i, t}^{2}=1 \\
\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon
\end{array}\right\}>0
$$

Model (In)validation of SARX Systems

Noise from to t-n
 similar to the Id case

Example: Activity Monitoring

- A priori switched model: walking and waiting, 4\% noise
- Test sequences of hybrid behavior:

WALK, WAIT
RUN
WALK, JUMP

Not Invalidated

Invalidated

Invalidated

Adding topological constraints:

- The model is invalid if and only if

$$
d^{*} \doteq\left\{\begin{array}{l}
\min _{\mathbf{s}, \boldsymbol{\eta}} \sum_{t=1}^{T} \sum_{i=1}^{n_{s}} e_{i, t}^{2} \\
\operatorname{subject~to:~}^{=} \\
\mathbf{s}_{\mathbf{i}, \mathbf{t}}\left(\mathbf{g}_{i, t}+\mathbf{h}_{i, t} \boldsymbol{\eta}_{t-n_{a}: t}\right)=\mathbf{e}_{i, t} \\
\sum_{i} s_{i, t}=1 \\
s_{i, t}^{2}=1 \\
\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon
\end{array}\right\}>0
$$

plus additional linear constraints:

$$
s_{i, t}+s_{j, t+1} \leq 1, \forall i \in I, \forall j \in J
$$

These destroy sparsity patterns!

Example: Activity Monitoring

A Priori information

Not Invalidated ($\mathrm{d}=-3 \mathrm{e}-8$)

Invalidated ($\mathrm{d}=0.175$)

Identifying Sparse Dynamical Networks

Who is in the same team?
Who reacts to whom?

Formalization as a graph id problem:

Each time series becomes a node in a graph

Each edge is a dynamical system

$$
\begin{gathered}
x_{i}(t)=\sum_{j=1, j \neq i}^{P} \sum_{n=k}^{N}\left(a_{j i}(n) x_{j}(t-n)\right)+u_{i}(t)+\eta_{i}(t) \\
=\underset{?}{a_{1} W \operatorname{Wh} \mu \sim}+\underset{?}{a_{2} \rightarrow \sim+\square}+
\end{gathered}
$$

A Sparsification Problem:

- Find block sparse solutions to:

$$
\mathbf{x}=[\mathbf{X}, \mathbf{I}]\left[\mathbf{a}^{t} \mathbf{u}^{t}\right]^{t}+\eta
$$

-Efficient solutions using atomic norm minimization
-Atoms are the time series at other nodes

- Projection free Frank-Wolfe algorithm

$$
\mathbf{x}=[\mathbf{X}, \mathbf{I}]\left[\mathbf{a}^{t} \mathbf{u}^{t}\right]^{t}+\eta \quad \begin{array}{ll}
\min _{\mathbf{z}} & \left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \\
\text { s.t. } & \|\mathbf{z}\|_{s \mathcal{A}} \leq \tau
\end{array}
$$

Algorithm

$$
\begin{array}{lll}
\min _{\mathbf{z}} & f(\mathbf{z}) & \min _{\mathbf{z}} \\
\text { s.t. } & \|\mathbf{z}\|_{\mathcal{A}} \leq \tau & \mathbf{x}_{j} \|_{2} \\
\text { s.t. } & \|\mathbf{z}\|_{s \mathcal{A}} \leq \tau
\end{array}
$$

Frank-Wolfe Algorithm

1: Initialize:
$\mathbf{z}^{(0)} \leftarrow \tau \mathbf{a}_{0}$ for arbitrary $\mathbf{a}_{0} \in \mathcal{A}$
2: for $k=0,1,2, \cdots$ do
3: $\quad \mathbf{a} \leftarrow \arg \min _{\mathbf{a} \in \mathcal{A}}\left\langle\partial f\left(\mathbf{z}^{(k)}\right), \mathbf{a}\right\rangle$
4: $\quad \alpha_{k} \leftarrow \arg \min _{\alpha \in[0,1]} f\left(\mathbf{z}^{(k)}+\alpha\left[\tau \mathbf{a}-\mathbf{z}^{(k)}\right]\right)$
5: $\mathbf{z}^{(k+1)} \leftarrow \mathbf{z}^{(k)}+\alpha_{k}\left[\tau \mathbf{a}-\mathbf{z}^{(k)}\right]$

6: end for

Algorithm

$$
\begin{array}{lll}
\min _{\mathbf{z}} & f(\mathbf{z}) & \min _{\mathbf{z}} \\
\text { s.t. } & \|\mathbf{z}\|_{\mathcal{A}} \leq \tau & \mathbf{x}_{j} \|_{2} \\
\text { s.t. } & \|\mathbf{z}\|_{s \mathcal{A}} \leq \tau
\end{array}
$$

Frank-Wolfe Algorithm

1: Initialize:

$\mathbf{z}^{(0)} \leftarrow \tau \mathbf{a}_{0}$ for arbitrary $\mathbf{a}_{0} \in \mathcal{A}$
2: for $k=0,1,2, \cdots$ do

$$
\begin{aligned}
L & \leftarrow \arg \max _{l}\left\{\left\|\left[\partial f\left(\mathbf{z}^{(k)}\right)\right]^{T} \mathbf{A}_{l}\right\|_{1}\right\} \\
\mathbf{c} & \leftarrow-\operatorname{sign}\left(\left[\partial f\left(\mathbf{z}^{(k)}\right)\right]^{T} \mathbf{A}_{L}\right) \\
\mathbf{a} & \leftarrow \mathcal{A}_{L} \mathbf{c}
\end{aligned}
$$

3: $\quad \mathbf{a} \leftarrow \arg \min _{\mathbf{a} \in \mathcal{A}} \operatorname{faf}\left(\frac{(k)}{(k)}, \mathrm{a}\right)$
4: $\quad \alpha_{k} \leftarrow \arg \min _{\alpha \in[0,1]} f\left(\mathbf{z}^{(k)}+\alpha\left[\mathbf{r a}-\mathbf{z}^{(k)}\right]\right)$
5: $\mathbf{z}^{(k+1)} \leftarrow \mathbf{z}^{(k)}+\alpha_{k}\left[\tau \mathbf{a}-\mathbf{z}^{(k)}\right]$

6: end for

Algorithm

$$
\begin{array}{lll}
\min _{\mathbf{z}} & f(\mathbf{z}) & \min _{\mathbf{z}} \\
\text { s.t. } & \|\mathbf{z}\|_{\mathcal{A}} \leq \tau & \mathbf{x}_{j} \|_{2} \\
\text { s.t. } & \|\mathbf{z}\|_{s \mathcal{A}} \leq \tau
\end{array}
$$

Frank-Wolfe Algorithm

1: Initialize:

$\mathbf{z}^{(0)} \leftarrow \tau \mathbf{a}_{0}$ for arbitrary $\mathbf{a}_{0} \in \mathcal{A}$
2: for $k=0,1,2, \cdots$ do

$$
\begin{aligned}
L & \leftarrow \arg \max _{l}\left\{\left\|\left[\partial f\left(\mathbf{z}^{(k)}\right)\right]^{T} \mathbf{A}_{l}\right\|_{1}\right\} \\
\mathbf{c} & \leftarrow-\operatorname{sign}\left(\left[\partial f\left(\mathbf{z}^{(k)}\right)\right]^{T} \mathbf{A}_{L}\right) \\
\mathbf{a} & \leftarrow \mathcal{A}_{L} \mathbf{c}
\end{aligned}
$$

3: $\quad \mathbf{a} \leftarrow \arg \min _{\mathbf{a} \in \mathcal{A}} \operatorname{faf}\left(\frac{(k)}{(k)}, \mathrm{a}\right)$
4: $\quad \alpha_{k} \leftarrow \arg \min _{\alpha \in[0,1]} f\left(\mathbf{z}^{(k)}+\alpha\left[\tau \mathbf{a}-\mathbf{z}^{(k)}\right]\right)$
5: $\mathbf{z}^{(k+1)} \leftarrow \mathbf{z}^{(k)}+\alpha_{k}\left[\tau \mathbf{a}-\mathbf{z}^{(k)}\right]$

$$
\alpha_{k} \leftarrow \max \left\{\min \left\{\frac{\left[\tau \mathbf{a}-\mathbf{z}^{(k)}\right]^{T}\left[\mathbf{x}_{j}-\mathbf{z}^{(k)}\right]}{\left\|\tau \mathbf{a}-\mathbf{z}^{(k)}\right\|_{2}^{2}}, 1\right\}, 0\right\}
$$

6: end for

Algorithm

$$
\begin{aligned}
& \min _{\mathbf{z}} f(\mathbf{z}) \\
& \min _{\mathbf{z}}\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \\
& \text { s.t. }\|\mathbf{z}\|_{\mathcal{A}} \leq \tau \\
& \text { s.t. }\|\mathbf{z}\|_{s \mathcal{A}} \leq \tau
\end{aligned}
$$

Frank-Wolfe Algorithm

1: Initialize:
$\mathbf{z}^{(0)} \leftarrow \tau \mathbf{a}_{0}$ for arbitrary $\mathbf{a}_{0} \in \mathcal{A}$
2: for $k=0,1,2, \cdots$ do

$$
\begin{aligned}
L & \leftarrow \arg \max _{l}\left\{\left\|\left[\partial f\left(\mathbf{z}^{(k)}\right)\right]^{T} \mathbf{A}_{l}\right\|_{1}\right\} \\
\mathbf{c} & \leftarrow-\operatorname{sign}\left(\left[\partial f\left(\mathbf{z}^{(k)}\right)\right]^{T} \mathbf{A}_{L}\right) \\
\mathbf{a} & \leftarrow \mathcal{A}_{L} \mathbf{c}
\end{aligned}
$$

3: $\quad \mathbf{a} \leftarrow \arg \min _{\mathbf{a} \in \mathcal{A}} \frac{\left.\operatorname{Laf}\left(\frac{(k)}{4}\right), \mathbf{a}\right\rangle}{}$
4: $\quad \alpha_{k} \leftarrow \arg \min _{\alpha \in[0,1]} f\left(\mathbf{z}^{(k)}+\alpha\left[\tau \mathbf{a}-\mathbf{z}^{(k)}\right]\right)$
5. $\mathbf{z}^{(k+1)} \leftarrow \mathbf{z}^{(k)}+\alpha_{k}\left[\tau \mathbf{a}-\mathbf{z}^{(k)}\right]$

$$
\alpha_{k} \leftarrow \max \left\{\min \left\{\frac{\left[\tau \mathbf{a}-\mathbf{z}^{(k)}\right]^{T}\left[\mathbf{x}_{j}-\mathbf{z}^{(k)}\right]}{\left\|\tau \mathbf{a}-\mathbf{z}^{(k)}\right\|_{2}^{2}}, 1\right\}, 0\right\}
$$

6: end for

Closed form solutions to each step

Example

Interactions between human agents

More examples:

Tracking by detection

Reduces to an assignment problem with "dynamics- induced" weights

$$
\frac{\operatorname{rank}\left(\mathbf{H}_{i}\right)+\operatorname{rank}\left(\mathbf{H}_{j}\right)}{\operatorname{rank}\left(\left[\mathbf{H}_{i} \mathbf{H}_{j}\right]\right)}-1
$$

Crowd photography sequencing

More examples where sparsity \& self similarity help

- Semi-supervised SysId
- Wiener systems identification
- Identification with outliers
- Identification of PWA systems
- (In)validation of PWA systems
- Sparse network Id.
- Optimal sensor placement
- Controller design subject to sparsity constraints

All of these are known to be NP-hard, yet often solvable in polynomial time using sparsity based convex relaxations

What is Big Data?

	X_{4} X_{4} X_{5} X_{5} x_{6} X_{6} X_{7} X_{7} X_{8} X_{8} x_{9}
x_{0} x_{1} x_{2} x_{3} x_{0} x_{1} x_{1} x_{1} x_{2} x_{3} x_{1} x_{2} x_{3} x_{4} x_{2} x_{3} x_{3} x_{4} x_{2} x_{5} x_{3} x_{4}^{3} x_{4} x_{5} y_{3} y_{4} y_{5} y_{6}	

What is Big (Dynamic) Data?

Computational complexity is related to data interconnectivity, not data size!!

Hard

What is Big (Dynamic) Data?

Computational complexity is related to data interconnectivity, not data size!!

Related to max clique size of an underlying graph

Big Data \& Sparsity:

Sparsity can provide a way around the curse of dimensionality

- Challenge: how to build in and exploit the "right" sparsity
- Graphs with small tree width (network design)
- Low order models
- Submodularity also helps
- what other properties can we exploit?
- An interesting connection between several communities:
- Control, semi-algebraic optimization, machine learning,....

Big Data \& Sparsity:

Sparsity can provide a way around the curse of dimensiong

- Challenge: how to build in and exy
- Graphs with small tree width 1 rk design)
- Low order models
- Submodularity also help
- what other propertig of we exploit?
- An interesting cor son between several communities:
- Control, sen co oraic optimization, machine learning,....

SoS for "real sized" problems :

- Many promising advances towards making SoS/Moments practical:
- ADMM, Frank-Wolfe, Factorizations
- Empirical experience: force \mathbf{M} to be rank 1

In many practical problems (e.g. subspace clustering) forcing a small matrix (much smaller than the running intersection) to have rank 1 guarantees $\operatorname{rank}(M)=1$

- New developments covered elsewhere in this workshop
- Ahmadi \& Hall: DSoS and SDSoS
- Lasserre: Krivine+Putinar P-satz (LP+fixed size SDC)
- Getting there, but more work needed. Keep tuned for more

Acknowledgements:

- Many thanks to:
- Audience
- Students: Y. Cheng, Y. Wang, X. Zhang
- Colleagues: O. Camps. C. Lagoa, N. Ozay
- Workshop organizers
- Funding agencies (AFOSR, DHS, NSF)

