Sum of Squares Optimization and Applications

Amir Ali Ahmadi
Princeton, ORFE (Affiliated member of PACM, COS, MAE)

CDC'17, Tutorial Lecture
Melbourne

Optimization over nonnegative polynomials

Defn. A polynomial $p(x):=p\left(x_{1}, \ldots, x_{n}\right)$ is nonnegative if $p(x) \geq 0, \forall x \in \mathbb{R}^{n}$.
Example: When is

$$
\begin{aligned}
& p\left(x_{1}, x_{2}\right)=c_{1} x_{1}^{4}-6 x_{1}^{3} x_{2}-4 x_{1}^{3}+c_{2} x_{1}^{2} x_{2}^{2}+10 x_{1}^{2}+12 x_{1} x_{2}^{2}+c_{3} x_{2}^{4} \\
& \text { nonnegative? } \\
& \text { nonnegative over a given basic semialgebraic set? }
\end{aligned}
$$

Basic semialgebraic set: $\quad\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0\right\}$

$$
\begin{array}{ll}
\mathrm{Ex}: & x_{1}^{3}-2 x_{1} x_{2}^{4} \geq 0 \\
& x_{1}^{4}+3 x_{1} x_{2}-x_{2}^{6} \geq 0
\end{array}
$$

Optimization over nonnegative polynomials

$$
\text { Is } p(x) \geq 0 \text { on }\left\{g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} ?
$$

Optimization

- Lower bounds on polynomial optimization problems

s.t. $p(x)-\gamma \geq 0$, $\forall x \in\left\{g_{i}(x) \geq 0\right\}$

- Fitting a polynomial to data subject to shape constraints (e.g., convexity, or monotonicity)

- Stabilizing controllers

$$
\begin{aligned}
& V(x)>0 \\
& V(x) \leq \beta \Rightarrow \nabla V(x)^{T} f(x)<0
\end{aligned}
$$

Implies that

$$
\{x \mid V(x) \leq \beta\}
$$

is in the region of attraction

$$
\frac{\partial p(x)}{\partial x_{j}} \geq 0, \forall x \in B
$$

How would you prove nonnegativity?

Ex. Decide if the following polynomial is nonnegative:

$$
\begin{aligned}
p(x)= & x_{1}^{4}-6 x_{1}^{3} x_{2}+2 x_{1}^{3} x_{3}+6 x_{1}^{2} x_{3}^{2}+9 x_{1}^{2} x_{2}^{2}-6 x_{1}^{2} x_{2} x_{3} \\
& -14 x_{1} x_{2} x_{3}^{2}+4 x_{1} x_{3}^{3}+5 x_{3}^{4}-7 x_{2}^{2} x_{3}^{2}+16 x_{2}^{4}
\end{aligned}
$$

- Not so easy! (In fact, NP-hard for degree ≥ 4)
-But what if I told you:

$$
\begin{aligned}
p(x)= & \left(x_{1}^{2}-3 x_{1} x_{2}+x_{1} x_{3}+2 x_{3}^{2}\right)^{2}+\left(x_{1} x_{3}-x_{2} x_{3}\right)^{2} \\
& +\left(4 x_{2}^{2}-x_{3}^{2}\right)^{2}
\end{aligned}
$$

- Is it any easier to test for a sum of squares (SOS) decomposition?

SOS \rightarrow SDP

Thm: A polynomial $\boldsymbol{p}(\boldsymbol{x})$ of degree $\mathbf{2 d}$ is sos if and only if there exists a matrix Q such that

$$
\begin{aligned}
& Q \succcurlyeq 0, \\
& p(x)=z(x)^{T} Q z(x),
\end{aligned}
$$

where

$$
z=\left[1, x_{1}, x_{2}, \ldots, x_{n}, x_{1} x_{2}, \ldots, x_{n}^{d}\right]^{T}
$$

The set of such matrices Q forms the feasible set of a semidefinite program.

How to prove nonnegativity over a basic semialgebraic set?

Positivstellensatz: Certifies that

$$
p(x)>0 \text { on }\left\{g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

Putinar's Psatz:
(1993)

$$
\begin{gathered}
p(x)>0 \text { on }\left\{g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \\
\Downarrow \begin{array}{c}
\text { under Archimedean condition }
\end{array} \\
p(x)=\sigma_{0}(x)+\sum_{i} \sigma_{i}(x) g_{i}(x) \\
\text { where } \sigma_{i}, i=0, \ldots, m \text { are sos }
\end{gathered}
$$

Search for σ_{i} is an SDP when we bound the degree.

Stengle’s Psatz (1974)
 Schmudgen's Psatz (1991)

[Lasserre, Parrilo]

All use sos polynomials...

Dynamics and Control

Lyapunov theory with sum of squares (sos) techniques

Ex. Lyapunov's

stability theorem.

$$
\dot{x}=f(x)
$$

Lyapunov $\quad V(x): \mathbb{R}^{n} \overrightarrow{\partial V} \mathbb{R}$

function

$$
\begin{aligned}
& \dot{V}(x)=\left\langle\frac{\vec{\partial} V}{\partial x}, f(x)\right\rangle
\end{aligned}
$$

$$
V(x) \operatorname{sos} \quad V(x)>0
$$

$$
-\dot{V}(x) \text { sos } \Rightarrow-\dot{V}(x)>0 \Rightarrow \mathrm{GAS}
$$

Global stability

$$
\begin{aligned}
V(x) & \text { sos } \\
-\dot{V}(x) & \text { sos }
\end{aligned} \Rightarrow \begin{aligned}
V(x) & >0 \\
-\dot{V}(x) & >0
\end{aligned} \Rightarrow \mathrm{GAS}
$$

Example.

$$
\begin{aligned}
& \dot{x_{1}}=-0.15 x_{1}^{7}+200 x_{1}^{6} x_{2}-10.5 x_{1}^{5} x_{2}^{2}-807 x_{1}^{4} x_{2}^{3}+14 x_{1}^{3} x_{2}^{4}+600 x_{1}^{2} x_{2}^{5}-3.5 x_{1} x_{2}^{6}+9 x_{2}^{7} \\
& \dot{x_{2}}=-9 x_{1}^{7}-3.5 x_{1}^{6} x_{2}-600 x_{1}^{5} x_{2}^{2}+14 x_{1}^{4} x_{2}^{3}+807 x_{1}^{3} x_{2}^{4}-10.5 x_{1}^{2} x_{2}^{5}-200 x_{1} x_{2}^{6}-0.15 x_{2}^{7} \\
& \text { Couple lines of code in SOSTOOLS, YALMIP, } \\
& \text { SPOTLESS, etc. } \\
& \text { Output of SDP solver: } \\
& V=0.02 x_{1}^{8}+0.015 x_{1}^{7} x_{2}+1.743 x_{1}^{6} x_{2}^{2}-0.106 x_{1}^{5} x_{2}^{3}-3.517 x_{1}^{4} x_{2}^{4} \\
& \\
& \quad+0.106 x_{1}^{3} x_{2}^{5}+1.743 x_{1}^{2} x_{2}^{6}-0.015 x_{1} x_{2}^{7}+0.02 x_{2}^{8} .
\end{aligned}
$$

Theoretical limitations: converse implications may fail

- Testing asymptotic stability of cubic vector fields is strongly NP-hard.

$$
\begin{aligned}
\dot{x} & =-x+x y \\
\dot{y} & =-y
\end{aligned}
$$

- Globally asymptotically stable.
- But no polynomial Lyapunov function of any degree!

[AAA, Krstic, Parrilo]
$\dot{x_{1}}=-x_{1}^{3} x_{2}^{2}+2 x_{1}^{3} x_{2}-x_{1}^{3}+4 x_{1}^{2} x_{2}^{2}-8 x_{1}^{2} x_{2}+4 x_{1}^{2}-x_{1} x_{2}^{4}+4 x_{1} x_{2}^{3}-4 x_{1}+10 x_{2}^{2}$
$\dot{x_{2}}=-9 x_{1}^{2} x_{2}+10 x_{1}^{2}+2 x_{1} x_{2}^{3}-8 x_{1} x_{2}^{2}-4 x_{1}-x_{2}^{3}+4 x_{2}^{2}-4 x_{2}$
- $\quad V(x)=x_{1}^{2}+x_{2}^{2}$ proves GAS.
- SOS fails to find any quadratic Lyapunov function.

Converse statements possible in special cases

1. Asymptotically stable homogeneous polynomial vector field \rightarrow Rational Lyapunov function with an SOS certificate. [AAA, El Khadir]
2. Exponentially stable polynomial vector field on a compact set \rightarrow Polynomial Lyapunov function.
[Peet, Papachristodoulou]
3. Asymptotically stable switched linear system \rightarrow Polynomial Lyapunov function with an SOS certificate.
[Parrilo, Jadbabaie]
4. Asymptotically stable switched linear system \rightarrow Convex polynomial Lyapunov function with an SOS certificate.
[AAA, Jungers]

Local stability - SOS on the Acrobot

(4-state system)

Controller designed by SOS

Swing-up:

[Majumdar, AAA, Tedrake]

Statistics and Machine Learning

Monotone regression: problem definition

- \mathbf{N} data points:
(x_{i}, y_{i}) with $x_{i} \in \mathbb{R}^{n}, y_{i} \in \mathbb{R}$, noisy measurements of a monotone function

$$
y_{i}=f\left(x_{i}\right)+\epsilon_{i}
$$

- Feature domain: box $B \subseteq \mathbb{R}^{n}$

> Monotonicity profile:
> $\rho_{j}=\left\{\begin{array}{cl}1 & \text { if } f \text { is monotonically increasing w.r.t. } x_{j} \\ -1 & \text { if } f \text { is monotonically decreasing w.r.t. } x_{j} \\ 0 & \text { if no monotonicity requirements on } f \text { w.r.t. } x_{j}\end{array}\right.$
> for $j=1, \ldots, n$.

Goal: Fit a polynomial to the data that has monotonicity profile ρ over B.

NP-hardness and SOS relaxation

Theorem: Given a cubic polynomial p, a box B, and a monotonicity profile ρ, it is NP-hard to test whether p has profile ρ over B.
[AAA, Curmei, Hall]

SOS relaxation:

$$
\begin{gathered}
\frac{\partial p(x)}{\partial x_{j}} \geq 0, \forall x \in B, \\
\text { where } \\
\mathrm{B}=\left[b_{1}^{-}, b_{1}^{+}\right] \times \cdots \times\left[b_{n}^{-}, b_{n}^{+}\right]
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial p(x)}{\partial x_{j}}=\sigma_{0}(x)+\sum_{i} \sigma_{i}(x)\left(b_{i}^{+}-x_{i}\right)\left(x_{i}-b_{i}^{-}\right) \\
\text {where } \sigma_{i}, i=0, \ldots, n \text { are sos polynomials }
\end{gathered}
$$

Approximation theorem

Theorem: For any $\epsilon>0$, and any C^{1} function f with monotonicity profile ρ, there exists a polynomial p with the same profile ρ, such that

$$
\max _{x \in B}|f(x)-p(x)|<\epsilon .
$$

Moreover, one can certify its monotonicity profile using SOS.
[AAA, Curmei, Hall]

Numerical experiments

Polynomial Optimization

A meta-theorem for producing hierarchies

Theorem: Let $K_{n, 2 d}^{r}$ be a sequence of sets of homogeneous polynomials in n variables and of degree $2 d$. If:
(1) $K_{n, 2 d}^{r} \subseteq P_{n, 2 d} \forall r$ and $\exists s_{n, 2 d}$ pd in $K_{n, 2 d}^{0}$
(2) $p>0 \Rightarrow \exists r \in \mathbb{N}$ s.t. $p \in K_{n, 2 d}^{r}$
(3) $K_{n, 2 d}^{r} \subseteq K_{n, 2 d}^{r+1} \forall r$
(4) $p \in K_{n, 2 d}^{r} \Rightarrow p+\epsilon s_{n, 2 d} \in K_{n, 2 d}^{r}, \forall \epsilon \in[0,1]$

Then,

where f_{γ} is a form which can be written down explicitly from p, g_{i}.
Example: Artin cones $A_{n, 2 d}^{r}=\{p \mid p \cdot q$ is sos for some sos q of degree $2 r\}$

An optimization-free converging hierarchy

$$
p(x)>0, \forall x \in\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

$2 d=$ maximum degree of p, g_{i}
(1 Under compactness assumptions,

$$
\text { i.e., }\left\{x \mid g_{i}(x) \geq 0\right\} \subseteq B(0, R)
$$

$$
\begin{gathered}
\exists r \in \mathbb{N} \text { such that } \\
\left(f\left(v^{2}-w^{2}\right)-\frac{1}{r}\left(\sum_{i}\left(v_{i}^{2}-w_{i}^{2}\right)^{2}\right)^{d}+\frac{1}{2 r}\left(\sum_{i}\left(v_{i}^{4}+w_{i}^{4}\right)\right)^{d}\right) \cdot\left(\sum_{i} v_{i}^{2}+\sum_{i} w_{i}^{2}\right)^{r^{2}} \\
\text { has nonnegative coefficients, }
\end{gathered}
$$

where f is a form in $n+m+3$ variables and of degree $4 d$, which can be explicitly written from p, g_{i} and R.

Ongoing directions: large-scale/real-time verification

- 30 states, 14 control inputs, cubic dynamics
- Done with SDSOS optimization (see Georgina's talk)

Two promising approaches:

1. LP and SOCP-based alternatives to SOS, Georgina's talk Less powerful than SOS (James' talk), but good enough for some applications
2. Exploiting problem structure and designing customized algorithms

Antonis' talk (next), and Pablo Parrilo's plenary (Thu. 8:30am)

