Iterative LP and SOCP-based approximations to sum of squares programs

Georgina Hall
Princeton University

Joint work with:
Amir Ali Ahmadi (Princeton University)

Sanjeeb Dash (IBM)

Sum of squares programs

- Problems of the type:

Linear objective and affine constraints in the coefficients of p (e.g., sum of coefs =1)

Many applications for problems of this form

Semidefinite programming formulation

Sum of squares program:

$\min _{p} C(p)$
s.t. $A(p)=b$
p SOS

$$
\begin{gathered}
\text { Equivalent semidefinite } \\
\text { programming formulation: } \\
\min _{p, Q} C(p) \\
\text { s.t. } A(p)=b \\
p=z(x)^{T} Q z(x) \\
Q \succcurlyeq 0
\end{gathered}
$$

But: Size of $Q=\binom{n+d}{d} \times\binom{ n+d}{d}$

Alternatives to sum of squares: dsos and sdsos

Diagonally dominant sum of squares (dsos)	$p(x)=z(x)^{T} Q z(x), Q$ diagonally dominant (dd)	$\mathbf{L P}$

Scaled diagonally dominant sum of squares (sdsos)

$$
p(x)=z(x)^{T} Q z(x), Q \text { scaled diagonally dominant (sdd) }
$$

Alternatives to sum of squares: dsos and sdsos

$\min C(p)$	$\min C(p)$
s.t. $A(p)=b$	scalability
p sos	s.t. $A(p)=b$
pdsos $/$ sdsos	

Example:

For a parametric family of polynomials:
$p\left(x_{1}, x_{2}\right)=2 x_{1}^{4}+2 x_{2}^{4}+a x_{1}^{3} x_{2}+(1-a) x_{1}^{2} x_{2}^{2}+b x_{1} x_{2}^{3}$

Alternatives to sum of squares: dsos and sdsos

- Example: Stabilizing the inverted N -link pendulum (2 N states)

$\mathrm{N}=1$

$\mathrm{N}=2$
$\mathrm{N}=6$

(a) $\theta_{1}-\dot{\theta}_{1}$ subspace.

(b) $\theta_{6}-\theta_{6}$ subspace.

ROA volume ratio:

2N (\# states)	4	6	8	10	12	14	16	18	20	22
DSOS	<1	0.44	2.04	3.08	9.67	25.1	74.2	200.5	492.0	823.2
SDSOS	<1	0.72	6.72	7.78	25.9	92.4	189.0	424.74	846.9	1275.6
SOS (SeDuMi)	<1	3.97	156.9	1697.5	23676.5	∞	∞	∞	∞	∞
SOS (MOSEK)	<1	0.84	16.2	149.1	1526.5	∞	∞	∞	∞	∞

2 N (states)	4	6	8	10	12
$\rho_{\text {dsos }} / \rho_{\text {sos }}$	0.38	0.45	0.13	0.12	0.09
$\rho_{\text {sdsos }} / \rho_{\text {sos }}$	0.88	0.84	0.81	0.79	0.79

[Ahmadi, Majumdar, Tedrake]

Improvements on dsos and sdsos

Replacing sos polynomials by dsos/sdsos polynomials:

- +: fast bounds
- - : not always as good quality (compared to sos)

Iteratively construct a sequence of improving LP/SOCPs

Method 1: Cholesky change of basis (1/3)

$$
\begin{aligned}
& p(x)=x_{1}^{4}-6 x_{1}^{3} x_{2}+2 x_{1}^{3} x_{3}+6 x_{1}^{2} x_{3}^{2}+9 x_{1}^{2} x_{2}^{2}-6 x_{1}^{2} x_{2} x_{3}-14 x_{1} x_{2} x_{3}^{2}+4 x_{1} x_{3}^{3} \\
& +5 x_{3}^{4}-7 x_{2}^{2} x_{3}^{2}+16 x_{2}^{4} \\
& \begin{array}{c}
p(x)=z^{T}(x) Q z(x) \\
Q=\left(\begin{array}{cccccc}
1 & -3 & 0 & 1 & 0 & 2 \\
-3 & 9 & 0 & -3 & 0 & -6 \\
0 & 0 & 16 & 0 & 0 & -4 \\
1 & -3 & 0 & 2 & -1 & 2 \\
0 & 0 & 0 & -1 & 1 & 0 \\
2 & -6 & 4 & 2 & 0 & 5
\end{array}\right)
\end{array} \\
& \text { psd but not dd } \\
& p(x)=\tilde{z}^{T}(x)\left(\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right) \tilde{z}(x) \\
& \text { dd in the "right basis" } \\
& \tilde{z}(x)=\left(\begin{array}{c}
2 x_{1}^{2}-6 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{3}^{2} \\
x_{1} x_{3}-x_{2} x_{3} \\
x_{2}^{2}-\frac{1}{4} x_{3}^{2}
\end{array}\right)
\end{aligned}
$$

$$
z(x)=\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1} x_{3}, x_{2} x_{3}, x_{3}^{2}\right)^{T}
$$

Method 1: Cholesky change of basis (2/3)

Sos problem
$\min C(p)$
s.t. $A(p)=b$
$\boldsymbol{p} \boldsymbol{s o s}$

Initialize	Step 1	Step 2
$\begin{gathered} \min C(p) \\ \text { s.t. } A(p)=b \\ \boldsymbol{p}=\boldsymbol{z}(\boldsymbol{x})^{T} \boldsymbol{Q} \mathbf{z}(\boldsymbol{x}), \\ \boldsymbol{Q} \boldsymbol{d} \boldsymbol{d} / \mathbf{s d d} \end{gathered}$	Replace: $U_{k}=\operatorname{chol}\left(U_{k-1}^{T} Q^{*} U_{k-1}\right)$	$\begin{gathered} \min C(p) \\ \text { s.t.A(p)=bew } \\ \boldsymbol{p}=\mathrm{z}(x)^{T} U_{k}^{T} \boldsymbol{Q} U_{k} Z(x), \\ \boldsymbol{Q} \boldsymbol{d d} / \boldsymbol{s d} \boldsymbol{d} \boldsymbol{d} \end{gathered}$
	$k:=k+1$	

One iteration of this method on a parametric family of polynomials:
$p\left(x_{1}, x_{2}\right)$
$=2 x_{1}^{4}+2 x_{2}^{4}+a x_{1}^{3} x_{2}+(1-a) x_{1}^{2} x_{2}^{2}+b x_{1} x_{2}^{3}$

Method 1: Cholesky change of basis $(3 / 3)$

- Example: minimizing a degree-4 polynomial in 4 variables

Method 2: Column generation (1/4)

- Focus on LP-based version of this method (SOCP is similar).

Two different ways of characterizing $\mathbf{Q} \boldsymbol{d} \boldsymbol{d}$:
(1) $Q d d \Leftrightarrow Q_{i i} \geq \sum_{j}\left|Q_{i j}\right|, \forall i$

> (2) Q dd $\Leftrightarrow \exists \alpha_{i} \geq 0$ s.t. $Q=\sum_{i} \alpha_{i} v_{i} v_{i}^{T}$, where v_{i} fixed vector with at most two nonzero components $= \pm 1$

Method 2: Column generation (2/4)

Dsos problem
$\min C(p)$
s.t. $A(p)=b$
$\boldsymbol{p}(\boldsymbol{x})=\boldsymbol{z}(\boldsymbol{x})^{T} \mathbf{Q z}(\boldsymbol{x}), \mathbf{Q} \boldsymbol{d} \boldsymbol{d}$

Dsos problem
$\min C(p)$
s.t. $A(p)=b$
$\boldsymbol{p}(\boldsymbol{x})=\sum_{i} \boldsymbol{\alpha}_{\boldsymbol{i}}\left(\boldsymbol{v}_{\boldsymbol{i}}^{T} \boldsymbol{z}(\boldsymbol{x})\right)^{2}, \boldsymbol{\alpha}_{\boldsymbol{i}} \geq \mathbf{0}$

Idea behind the algorithm:

Expand feasible space at each iteration by adding a new vector v and variable α

$$
\begin{gathered}
\min C(p) \\
\text { s.t. } A(p)=b \\
\boldsymbol{p}(\boldsymbol{x})=\sum_{i} \boldsymbol{\alpha}_{\boldsymbol{i}}\left(\boldsymbol{v}_{\boldsymbol{i}}^{T} \boldsymbol{z}(\boldsymbol{x})\right)^{2}+\alpha\left(v^{T} Z(x)\right)^{2} \quad \boldsymbol{\alpha}_{\boldsymbol{i}} \geq \mathbf{0}, a \geq 0
\end{gathered}
$$

Method 2: Column generation (3/4)

PRIMAL

DUAL

A general SDP
$\max _{y \in \mathbb{R}^{m}} b^{T} y$
s.t. $C-\sum_{i=1}^{m} y_{i} A_{i} \succcurlyeq 0$

LP obtained with inner approximation of PSD by DD

$\max _{\substack{y \in \mathbb{R}^{m} \\ m}} b^{T} y$
s.t. $C-\sum_{i=1}^{m} y_{i} A_{i}=\sum \alpha_{i} v_{i} v_{i}^{T}$
$\alpha_{i} \geq 0$

LP obtained with inner approximation of PSD by DD
$\max _{y \in \mathbb{R}^{m}} b^{T} y$
s.t. $C-\sum_{i=1}^{m} y_{i} A_{i}=\sum \alpha_{i} v_{i} v_{i}^{T}$
$\alpha_{i} \geq 0$

Dual of SDP
$\min _{X \in S^{n}} \operatorname{tr}(C X)$
s.t. $\operatorname{tr}\left(A_{i} X\right)=b_{i}$
$X \succcurlyeq 0$

Pick v s.t. $\boldsymbol{v}^{T} \boldsymbol{X} v<0$.

Method 2: Column Generation (4/4)

- Example 2: minimizing a degree-4 polynomial

	$n=15$		$n=20$		$n=25$	$n=30$	$n=40$		
	bd	$\mathrm{t}(\mathrm{s})$	bd	$\mathrm{t}(\mathrm{s})$	bd	$\mathrm{t}(\mathrm{s})$	bd	$\mathrm{t}(\mathrm{s})$	bd
DSOS	-10.96	0.38	-18.01	0.74	-26.45	15.51	-36.52	7.88	-62.30
DSOS $_{k}$	-5.57	31.19	-9.02	471.39	-20.08	600	-32.28	600	-35.14
SOS	-3.26	5.60	-3.58	82.22	-3.71	1068.66	NA	NA	NA

Method 3: r-s/dsos hierarchy (1/3)

- A polynomial p is \mathbf{r}-dsos if $p(x)\left(\sum_{i} x_{i}^{2}\right)^{r}$ is dsos.
- A polynomial p is \mathbf{r}-sdsos if $p(x)\left(\sum_{i} x_{i}^{2}\right)^{r}$ is sdsos.

Defines a hierarchy based on r.

Theorem

Any even positive definite form \boldsymbol{p} is r-dsos for some \boldsymbol{r}. Proof: Follows from a result by Polya.

Proof of positivity using LP.

Method 3: r-s/dsos hierarchy (2/3)

- Example: certifying stability of a switched linear system $x_{k+1}=A_{\sigma(k)} x_{k}$ where $A_{\sigma(k)} \in\left\{A_{1}, \ldots, A_{m}\right\}$

Recall:

Theorem 1: A switched linear system is stable if and only if

$$
\rho\left(A_{1} \ldots, A_{m}\right)<1 .
$$

Theorem 2 [Parrilo, Jadbabaie]:

$$
\begin{gathered}
\rho\left(A_{1}, \ldots, A_{m}\right)<1 \\
\Leftrightarrow
\end{gathered}
$$

\exists a pd polynomial Lyapunov function $V(x)$ such that $V(x)-V\left(A_{i} x\right)>0, \forall x \neq 0$.

Method 3: r-s/dsos hierarchy (3/3)

Theorem: For nonnegative $\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}\right\}, \rho\left(A_{1}, \ldots, A_{m}\right)<1 \Leftrightarrow$ $\exists r \in \mathbb{N}$ and a polynomial Lyapunov function $V(x)$ such that

$$
V\left(x^{2}\right) \mathrm{r} \text {-dsos and } V\left(x^{2}\right)-V\left(A_{i} x^{2}\right) \mathrm{r} \text {-dsos. }
$$

Proof:

$(\Leftarrow)(\star) \Rightarrow V(x) \geq 0$ and $V(x)-V\left(A_{i} x\right) \geq 0$ for any $x \geq 0$.
Combined to $A_{i} \geq 0$, this implies that trajectories of $x_{k+1}=A_{\sigma(k)} x_{k}$ starting from $x_{0} \geq 0$ go to zero.
This can be extended to any x_{0} by noting that $x_{0}=x_{0}^{+}-x_{0}^{-}, x_{0}^{+}, x_{0}^{-} \geq 0$.
(\Rightarrow) From Theorem 2, and using Polya's result as $V\left(x^{2}\right)$ and $V\left(x .^{2}\right)-V\left(A_{i} x .^{2}\right)$ are even forms.

Main messages

- Can construct iterative inner approximations of the cone of nonnegative polynomials using LPs and SOCPs.
- Presented three methods:

	Cholesky change of basis	Column Generation	r-s/dsos hierarchies
Initialization	Initialize with dsos/sdsos polynomials		
Method	Rotate existing "atoms"" of the cone of dsos/sdsos polynomials	Add new atoms to the extreme rays of the cone of dsos/sdsos polynomials	Use multipliers to certify nonnegativity of more polynomials.
Size of the LP/SOCPs obtained	Does not grow (but possibly denser)	Grows slowly	Grows quickly
Objective taken into consideration	Yes	Yes	No
Can beat the SOS bound	No	No	Yes

Thank you for listening

 Questions?Want to learn more?
http://scholar.princeton.edu/ghall/

