

Iterative LP and SOCP-based approximations to sum of squares programs

Georgina Hall Princeton University

Joint work with:

Amir Ali Ahmadi (Princeton University)

Sanjeeb Dash (IBM)

Sum of squares programs

• Problems of the type:

Linear objective and affine constraints in the coefficients of p (e.g., sum of coefs =1)

Many applications for problems of this form

Semidefinite programming formulation

Equivalent semidefinite programming formulation: $\min_{p,Q} C(p)$ s.t.A(p) = b $p = z(x)^T Q z(x)$ $Q \ge 0$

But: Size of
$$Q = \binom{n+d}{d} \times \binom{n+d}{d}$$

Alternatives to sum of squares: dsos and sdsos

Sum of squares (sos) $p(x) = z(x)^T Q z(x), Q \ge 0$				
$\{Q \mid Q \geq 0\}$ $\{Q \mid Q \geq 0\}$ $SDD \text{ cone } \coloneqq \{Q \mid Q_{ii} \geq \sum_{j} Q_{ij} , \forall i\}$ $SDD \text{ cone } \coloneqq \{Q \mid \exists \text{ diagonal } D \text{ with } D_{ii} \geq 0\}$	> 0 s.t. <i>DQD dd</i> }			
$p(x) = z(x)^T Q z(x), Q$ diagonally dominant (dd)	LP			
$p(x) = z(x)^T Q z(x), Q$ scaled diagonally dominant (sdd)	SOCP			
	$p(x) = z(x)^{T}Qz(x), Q \ge 0$ $\{Q \mid Q \ge 0\}$ $\int DD \text{ cone} := \{Q \mid Q_{ii} \ge \sum_{j} Q_{ij} , \forall i\}$ $SDD \text{ cone} := \{Q \mid \exists \text{ diagonal } D \text{ with } D_{ii} \ge p(x) = z(x)^{T}Qz(x), Q \text{ diagonally dominant (dd)}$ $p(x) = z(x)^{T}Qz(x), Q \text{ scaled diagonally dominant (sdd)}$			

[Ahmadi, Majumdar] 4

Alternatives to sum of squares: dsos and sdsos

$$\begin{array}{ll} \min C(p) & \min C(p) \\ s.t.A(p) = b & \text{scalability} & s.t.A(p) = b \\ p \, sos & p \, dsos/sdsos \end{array}$$

Example:

For a parametric family of polynomials:

$$p(x_1, x_2) = 2x_1^4 + 2x_2^4 + ax_1^3x_2 + (1 - a)x_1^2x_2^2 + bx_1x_2^3$$

Alternatives to sum of squares: dsos and sdsos

N=6

• Example: Stabilizing the inverted N-link pendulum (2N states)

N=1

Runtime:

2N (# states)	4	6	8	10	12	14	16	18	20	22
DSOS	< 1	0.44	2.04	3.08	9.67	25.1	74.2	200.5	492.0	823.2
SDSOS	< 1	0.72	6.72	7.78	25.9	92.4	189.0	424.74	846.9	1275.6
SOS (SeDuMi)	< 1	3.97	156.9	1697.5	23676.5	∞	∞	∞	∞	∞
SOS (MOSEK)	< 1	0.84	16.2	149.1	1526.5	∞	∞	∞	∞	∞

N=2

ROA volume ratio:

2N (states)	4	6	8	10	12
$ ho_{dsos}/ ho_{sos}$	0.38	0.45	0.13	0.12	0.09
$ ho_{sdsos}/ ho_{sos}$	0.88	0.84	0.81	0.79	0.79

[Ahmadi, Majumdar, Tedrake]

Improvements on dsos and sdsos

Replacing sos polynomials by dsos/sdsos polynomials:

- +: fast bounds
- - : not always as good quality (compared to sos)

Iteratively construct a sequence of improving LP/SOCPs

Method 1: Cholesky change of basis (1/3)

$$p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_3^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3 - 14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4$$

$$p(x) = z^{T}(x)Qz(x)$$

$$Q = \begin{pmatrix} 1 & -3 & 0 & 1 & 0 & 2 \\ -3 & 9 & 0 & -3 & 0 & -6 \\ 0 & 0 & 16 & 0 & 0 & -4 \\ 1 & -3 & 0 & 2 & -1 & 2 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 2 & -6 & 4 & 2 & 0 & 5 \end{pmatrix}$$

$$psd but not dd$$

$$z(x) = (x_{1}^{2}, x_{1}x_{2}, x_{2}^{2}, x_{1}x_{3}, x_{2}x_{3}, x_{3}^{2})^{T}$$

$$p(x) = \tilde{z}^T(x) \begin{pmatrix} \frac{1}{2} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 4 \end{pmatrix} \tilde{z}(x)$$

dd in the "right basis"

$$\tilde{z}(x) = \begin{pmatrix} 2x_1^2 - 6x_1x_2 + 2x_1x_3 + 2x_3^2 \\ x_1x_3 - x_2x_3 \\ x_2^2 - \frac{1}{4}x_3^2 \end{pmatrix}$$

Goal: iteratively improve on basis z(x).

Method 1: Cholesky change of basis (2/3)

Method 1: Cholesky change of basis (3/3)

• Example: minimizing a degree-4 polynomial in 4 variables

Method 2: Column generation (1/4)

• Focus on LP-based version of this method (SOCP is similar).

Two different ways of characterizing Q dd:

(1)
$$Q \, dd \Leftrightarrow Q_{ii} \ge \sum_j |Q_{ij}|, \forall i$$

2)
$$Q$$
 dd $\Leftrightarrow \exists \alpha_i \ge 0$ s.t. $Q = \sum_i \alpha_i v_i v_i^T$,
where v_i **fixed vector** with
at most two nonzero components = +1

[In collaboration with Sanjeeb Dash, IBM Research] 11

Method 2: Column generation (2/4)

Dsos problem
$\min C(p)$
s.t.A(p) = b
$n(\mathbf{x}) = \sum \alpha \left(\mathbf{y}_{i}^{T} \mathbf{z}(\mathbf{x}) \right)^{2} \alpha_{i} > 0$
$p(\mathbf{x}) = \sum_{i} u_{i} \left(v_{i} Z(\mathbf{x}) \right) , u_{i} \ge 0$

Idea behind the algorithm:

Expand feasible space at each iteration by adding a new vector v and variable α

$$\min C(p)$$

s.t. $A(p) = b$
 $p(x) = \sum_{i} \alpha_{i} \left(v_{i}^{T} z(x) \right)^{2} + \alpha \left(v_{i}^{T} z(x) \right)^{2} \alpha_{i} \ge 0, \alpha \ge 0$

Question: How to pick v? Use the dual!

Method 2: Column generation (3/4)

Method 2: Column Generation (4/4)

• Example 2: minimizing a degree-4 polynomial

	<i>n</i> = 15		<i>n</i> = 20		n = 25		<i>n</i> = 30		n = 40	
	bd	t(s)	bd	t(s)	bd	t(s)	bd	t(s)	bd	t(s)
DSOS	-10.96	0.38	-18.01	0.74	-26.45	15.51	-36.52	7.88	-62.30	10.68
DSOS _k	-5.57	31.19	-9.02	471.39	-20.08	600	-32.28	600	-35.14	600
SOS	-3.26	5.60	-3.58	82.22	-3.71	1068.66	NA	NA	NA	NA

Method 3: r-s/dsos hierarchy (1/3)

- A polynomial p is **r-dsos** if $p(x)(\sum_i x_i^2)^r$ is **dsos**.
- A polynomial p is **r-sdsos** if $p(x)(\sum_i x_i^2)^r$ is **sdsos**.

Defines a hierarchy based on r.

Theorem

Any even positive definite form *p* is r-dsos for some *r*.

Proof: Follows from a result by Polya.

Proof of positivity using LP.

[Ahmadi, Majumdar]

Method 3: r-s/dsos hierarchy (2/3)

• **Example:** certifying stability of a switched linear system $x_{k+1} = A_{\sigma(k)}x_k$ where $A_{\sigma(k)} \in \{A_1, \dots, A_m\}$

Recall:

Theorem 1: A switched linear system is stable if and only if $\rho(A_1 \dots, A_m) < 1$.

Theorem 2 [Parrilo, Jadbabaie]: $\rho(A_1, ..., A_m) < 1$ \Leftrightarrow \exists a pd polynomial Lyapunov function V(x)such that $V(x) - V(A_i x) > 0, \forall x \neq 0$.

Method 3: r-s/dsos hierarchy (3/3)

Theorem: For nonnegative $\{A_1, ..., A_m\}$, $\rho(A_1, ..., A_m) < 1 \Leftrightarrow \exists r \in \mathbb{N}$ and a polynomial Lyapunov function V(x) such that $V(x.^2)$ r-dsos and $V(x.^2) - V(A_ix.^2)$ r-dsos. (*)

Proof:

$$(\Leftarrow) (\star) \Rightarrow V(x) \ge 0$$
 and $V(x) - V(A_i x) \ge 0$ for any $x \ge 0$.

Combined to $A_i \ge 0$, this implies that trajectories of $x_{k+1} = A_{\sigma(k)}x_k$ starting from $x_0 \ge 0$ go to zero.

This can be extended to any x_0 by noting that $x_0 = x_0^+ - x_0^-$, x_0^+ , $x_0^- \ge 0$.

(⇒) From Theorem 2, and using Polya's result as $V(x^2)$ and $V(x^2) - V(A_i x^2)$ are even forms.

Main messages

- Can construct **iterative inner approximations** of the cone of nonnegative polynomials using LPs and SOCPs.
- Presented three methods:

	Cholesky change of basis	Column Generation	r-s/dsos hierarchies
Initialization	Initia	alize with dsos/sdsos polyr	nomials
Method	Rotate existing "atoms" of the cone of dsos/sdsos polynomials	Add new atoms to the extreme rays of the cone of dsos/sdsos polynomials	Use multipliers to certify nonnegativity of more polynomials.
Size of the LP/SOCPs obtained	Does not grow (but possibly denser)	Grows slowly	Grows quickly
Objective taken into consideration	Yes	Yes	No
Can beat the SOS bound	No	No	Yes

Thank you for listening

Questions?

Want to learn more? http://scholar.princeton.edu/ghall/