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Sums of squares

p(x) =
∑
i

[pi(x)]2 =⇒ p(x) ≥ 0 for all x

I sufficient condition for global nonnegativity

I generic tool for constructing convex optimization
formulations/relaxations

I Key observation: SOSn,2d has semidefinite description
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Scalability: use SDPs with only small blocks

Inner approximations to SOS cone:

I DSOS: linear programming formulation (1× 1 blocks)

I SDSOS: second-order cone formulation (2× 2 blocks)

p SDSOS ⇐⇒ p(x) = vd(x)TGvd(x)

where G is “scaled diagonally dominant”

Equivalently: there exist 2× 2 psd matrices G{i ,j} s.t.

G =
∑
i<j

E{i ,j}G{i ,j}E
T
{i ,j}

Solution time for SDPs with (small) bounded blocks
more like LP than general SDP
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Challenge: what can be done with small blocks?

DSOS and SDSOS:

I particular strategies for
approximating SOS cones
with sets that can be described
using small SDP blocks

Can we find
I Better approximations with fewer small blocks?
I Exact formulations of SOS cones using only small blocks?

How to reason about all possible SDP formulations
with small blocks?
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Lifts of convex sets

Definition: A convex set C has a K -lift if there is an affine
subspace L and linear map π such that

C = π(K ∩ L)

KL

π

C

If C has a K -lift then linear optimization problems over
C can be formulated as conic programs over K .
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Lifts with small blocks: (S2
+)p-lifts

Cone: product of 2× 2 PSD cones

(S2
+)p := S2

+ × · · · × S2
+ (p terms)

For a convex set:

(S2
+)p-lift ⇐⇒ LMI description with 2× 2 blocks

All basic ideas generalize to bounded block size case

Examples:

I n × n scaled diag. dominant matrices: has (S2
+)(n

2)-lift

I {X ∈ S3
+ : X11 = X22} has (S2

+)2-lift
(chordal sparsity after congruence transformation)
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Some related work

Lifts using 1× 1 blocks ←→ linear prog. descriptions

I Existence easy: C has LP lift if and only if C a polyhedron

I Main effort: lower bounds on size of lifts
I Connection with nonnegative rank: Yannakakis (1991)
I Correlation/CUT/TSP polytope: Fiorini et al. (2012)
I Matching polytope: Rothvoß (2013)

No restriction on block size ←→ general SDP descriptions

I Many constructions (including SOS cones)

I Scheiderer (2017)
PSDn,d has Sp

+-lift if and only if PSDn,d = SOSn,d

Very little known about obstructions to
representability with small blocks
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Fawzi’s result

Question: For which (n, d) does SOSn,d have an (S2
+)p-lift?

I (n, d) = (1, 2) (trivial)

I Are there any other cases with (S2
+)p-lifts?

Fawzi (2016) The cone of non-negative univariate
quartics does not have a (S2

+)p-lift.

Corollaries: cannot describe using 2× 2 PSD blocks:

I SOSn,d unless (n, d) = (1, 2)

I n × n PSD cone for n ≥ 3
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Slack matrix

Associate slack matrix with convex cone C

Sx ,` = 〈`, x〉

`

x

C

where

I ` linear functional non-negative on C

I x an element of C

The slack matrix is entry-wise nonnegative.

Lifts of C correspond to structured factorizations of S
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Lifts of convex sets and S2
+-rank

A nonnegative matrix S has S2
+-rank one if ∃ Ai ,Bj ∈ S2

+ s.t.

S =


〈A1,B1〉 〈A1,B2〉 · · · 〈A1,Bb〉
〈A2,B1〉 〈A2,B2〉 · · · 〈A2,Bb〉

...
...

. . .
...

〈Aa,B1〉 〈Aa,B2〉 · · · 〈Aa,Bb〉


Definition: The S2

+-rank of an entrywise nonnegative matrix S
is the smallest p such that S = S1 + S2 + · · ·+ Sp where each
Sk has S2

+-rank one.

Theorem [Gouveia, Parrilo, Thomas 2013]
If C has a proper (S2

+)p-lift then (any submatrix of) its
slack matrix has has S2

+-rank at most p.
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Slack matrix of non-negative univariate quartics

Indexed by non-neg. polynomials p ∈ SOS1,4 and points t ∈ R:

Sp,t = p(t) ≥ 0

If SOS1,4 had (S2
+)p-lift then for any non-negative quartics

p1, . . . , pa and any points t1, . . . , tb ∈ R, could write
p1(t1) p1(t2) · · · p1(t1)
p2(t1) p2(t2) · · · p2(t2)

...
...

. . .
...

pa(t1) pa(t2) · · · pa(tb)

 = S1 + S2 + · · ·+ Sp

where each Si has S2
+-rank one
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Define sequence of submatrices

For positive integers 1 ≤ i1 < i2 define

p{i1,i2}(t) = [(i1 − i2)(i1 − t)(i2 − t)]2

Define
(
k
2

)
× k submatrices of S by

S
(k)
{i1,i2},j = p{i1,i2}(j)

for 1 ≤ i1 < i2 ≤ k and 1 ≤ j ≤ k

Example:

S (3) =

1 2 3
p{1,2}
p{1,3}
p{2,3}

0 0 4
0 4 0
4 0 0


1 2 3
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Show that S2
+-rank of S (k) grows without bound

Key ingredients:

I if k ′ < k then S (k ′) a submatrix of S (k)

I if Sij = 0 and S = S1 + · · ·+ Sp with non-negative terms
then [Sk ]ij = 0 for all k

I if S2
+-rank one matrix has two zeros in a non-zero row

then the corresponding columns are scalings of each other

a
b1

b2
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Approximations?

I How well can we approximate SOS cones with
cones having SDP representations with few small blocks?

I Even for polyhedral approximations (1× 1 blocks)
how do approximation quality and size of lift relate?

I Can we find quantitative lower bounds? What do
obstructions look like?
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Sum of squares optimization

Useful: in control, combinatorial optimization, analysis of
games, quantum information, . . .

Challenge: Natural SDP formulation scales
poorly with increasing degree/number of variables

Possibilities:

I Algorithms that exploit structure (e.g., sparsity)

I Alternative certificates of non-negativity: DSOS, SDSOS
can search for these via LP/SOCP

I Iterative methods based on DSOS and SDSOS

I Better approximations with small blocks(?)
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Exploiting sparsity in first-order methods

SOS programs:

I Coefficient matching constraints very sparse

I Have additional ‘partial orthogonality’ structure

I Can solve and exploit this structure
using ADMM-based first-order methods

CDCS: open-source MATLAB solver for partially
decomposable conic programs (including SOS)
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DSOS and SDSOS

Search over inner
approximations to SOS cone:

I DSOS: diag. dominant
Gram matrix (LP)

I SDSOD: scaled diag.
dominant Gram matrix
(SOCP)

Trade-off

I (S)DSOS inner approx. =⇒ ‘weaker’ than regular SOS

I BUT can solve problems ‘higher’ in r -(S)DSOS hierarchy
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Adaptive non-negativity certificates

Classical SOS:
I choose subspace(s) of functions to take sums of squares

from (e.g., polynomials of degree at most d)
I Search for DSOS/SDSOS/SOS certificates

(S)DSOS column generation:
I Large dictionary of small subspaces of functions to take

sums of squares from
I Each iteration, add useful subspace to the dictionary

(S)DSOS Cholesky change of basis:
I Each iteration, update subspace(s) of functions to take

sums of squares from
I Don’t increase size of subspace, but improve it

Systematic study of such adaptive certificates?
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