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Introduction to Bimatrix Games

1 Two payoff matrices A and
B.

2 The players choose
strategies x and y which
denote probabilities with
which each player plays
each row/column.

3 Expected payoffs will be
xTAy and xTBy .

4 A Nash equilibrium is a
pair of strategies which are
a “mutual best response”
to each other.

Example (Rock Paper Scissors)

Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Rock Paper Scissors
Rock 0 1 -1
Paper -1 0 1
Scissors 1 -1 0

1 Nash equilibrium:
x = y = ( 1

3 ,
1
3 ,

1
3 )

2 Not a Nash equilibrium:
x = y = ( 1

2 ,
1
2 , 0)
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Complexity of Nash Equilibria

1 Existence?

Exists for every finite game!
Proved by Nash (1951).

2 Is computationally hard to find.

Lemke-Howson can find, but worst-case exponential time.

3 ε-Approximate Nash equilibrium: players are playing strategies which
give them within ε of their best response.

4 Note: Any x and y form an ε-Nash Equilibrium where

ε = max(max
i

eTi Ay − xTAy ,max
j

xTBej − xTBy))

5 Approximating Nash Equilibria is also computationally hard.
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QP Formulation (Nonconvex)

Observation

The solutions to the following nonconvex QCQP are the Nash equilibria of
the game defined by A and B:

min 0

subject to xTAy − eTi Ay ≥ 0, ∀i ,
xTBy − xTBei ≥ 0, ∀i ,
x ∈ 4m,

y ∈ 4n.
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Relaxations

Nonconvex Set ⇒ Convex Relaxation ⇒ Tightened Convex
Relaxation with Valid Inequalities
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SDP Relaxation

xy
1

xy
1

T

=

xxT xyT x
yxT yyT y
xT yT 1


min
x,y

0

subject to xTAy − eTi Ay ≥ 0,

xTBy − xTBei ≥ 0,

x ∈ 4m,

y ∈ 4n.
⇒

M :=

 X P x
PT Y y
xT yT 1


min

x,y ,X ,Y ,P
0

subject to Tr(APT )− eTi Ay ≥ 0,

Tr(BPT )− xTBei ≥ 0,

x ∈ 4m,

y ∈ 4n,

M � 0,

+ Valid Inequalities.
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Zero-Sum Game

Definition (Zero-Sum Game)

A zero-sum game is a game in which B = -A.

Theorem (Zero-Sum Game)

This SDP recovers a Nash Equilibrium in Zero Sum games.
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Approximation Quality

Theorem

Let λ1, ...λk be the eigenvalues of the matrix M. Then x and y are an
ε-Nash Equilibrium with ε ≤ 1

2(m + n)
∑k

i=2 λi .

Theorem

If the matrix M is rank-2, then a 5
11 -Nash Equilibrium can be recovered

from the solution.

Theorem

For a symmetric game, if the matrix M is rank-2, then a symmetric ε-Nash
Equilibrium with ε ≤ 1

3 can be recovered from the solution.
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Algorithms

1 In practice we apply many
additional improvements to
the SDP.

2 Use trace of M as the
objective function.

3 Iteratively update the
objective function.

M :=

 X P x
PT Y y
xT yT 1


min Tr(M)

subject to M � 0,

+ Valid Inequalities.
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Linearization Algorithms

Lemma

The following nonconvex objective functions, if minimized, return rank-1
solutions:

Tr(M)− xT x − yT y∑m+n
i=1

√
Mi ,i

1 We iteratively update the objective functions based on a linearization
of those functions “Diagonal Gap” and “Diagonal Square Root”).

2 1: Solve SDP with Tr(M) as objective.
2: while !convergence do
3: Solve SDP with updated objective function.
4: end while
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Properties of Algorithm

Theorem

The diagonal gap linearization algorithm produces a sequence of

Tr(M)− xT x − yT y

which is nonincreasing and lower bounded by 1. If it reaches 1, then an
exact Nash equilibrium can be recovered from the solution.

Theorem

The diagonal square root linearization algorithm produces a sequence of

m+n∑
i=1

√
Mi ,i

which is nonincreasing and lower bounded by 2. If it reaches 2, then an
exact Nash equilibrium can be recovered from the solution.
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Improvements of ε Through Iterations

Histogram of ε for 100 20x20 Games (Diagonal Gap)
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Improvements of ε Through Iterations

Histogram of ε for 100 20x20 Games (Diagonal Square Root)
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Other Applications of SDP: Strategy Exclusion

1 Other interesting questions from an economic perspective:

2 Often we seek Nash equilibria with certain properties, or find out
whether they exist.

3 Given a strategy, is there any Nash Equilibrium in which that strategy
is played?

4 This is NP-hard to decide.

5 Can be solved through nonconvex QP, which we can also relax with
SDP.

Game Size 5× 5 10× 10

Number of Strategies 1000 2000

Number Correct 996 2000
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Other Applications of SDP: Maximum Welfare

1 We might also seek a Nash equilibrium with high social welfare.

Welfare in any Nash Equilibrium - the sum of the payoffs.

2 This quantity is NP-hard to find.

3 Can be solved through nonconvex QP, which we can also relax with
SDP.
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Experiments: Maximum Welfare under Nash Equilibrium

True Maximum vs SDP Approximation (10× 10 games)
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Thank You!

For details see
https://arxiv.org/abs/1706.08550
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