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Robust to Dynamics Optimization (RDO)

An RDO is describe by two pieces of input:
1) An optimization problem: mln{f(m) : T € Q}
x

2) Adynamical system:  Tpi1 = Gg(Tr) or T = g(J/)

RDO is then the following problem:

(discrete time) min{ f(xo) : 1 € Q,k=0,1,2,...}
o

(continuous time)  min{ f (o) : x(t; x0) € Q,Vt > 0}
x(
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Various RDO problems to study...

H;in{f(xo):xk € O, Vk; xpq1 = g(x)}
0

This talk:

Optimization Problem | Dynamics

Linear Program ﬂ Linear
Integer Program Nonlinear
Semidefinite Program | Uncertain,
Polynomial Program Time-varying

Robust Linear Program Discrete /continuous/hybrid of both
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R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

min{c”x: Ax < b}
X

min{c’x: Ax < b,VA € A, b € B}
X

111111{(31 xo: Axp < b,k=0,1,2,...;20511 = Gy}
T
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R-LD-LP
Robust to linear dynamics linear programming (R-LD-LP)
min{cl ro: Ary < b,k=0,1,2,...;20841 = Gop}
I()

Input data: A, b, c, G

Alternative form:

min{c’x: Ax < b,AGx < b,AG*x < b,AG3>x < b, ...}
X

Feasible set of R-LD-LP: o0
S:= ({z| AG*z < b}
Wihen B k=0
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An example...
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Obvious way to get lower bounds

111111{0 :Lo Amp < b k= 0.1,2;...1%1 — Gog}

o

Can get a sequence of lower bounds by solving finite LPs:

min{cTx:Ax < b,AGx < b,AG?’x < b, ..., AG"x < b}
X

Is the optimal value of R-LD-LP achieved in a finite number of steps?
Is the feasible set of R-LD-LP always a polytope?
When it is, how large are the number of facets?
How to get upper bounds?!
* (WEe’ll see soon: from semidefinite programming)
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Feasible set of R-LD-LP

Lemma. The feasible set of R-LD-LP is closed, convex, and invariant.

o0
Proof. Easy. S = ﬂ {z| AGFz < b}
k=0

e But it may not be polyhedral.
e Evenifitis, it may not be achieved at a finite level.
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Feasible set of R-LD-LP

20)
o %

r=%
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Feasible set of R-LD-LP

G= [Cos® smoy o3
K 5:'n9 C059
(A <ts
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Detecting finiteness

Lemma. Suppose for some r we have

r+1

ﬂ {x| AGFz <b} = ﬂ {z| AG*z < b}
k=0 k=0

Then,

o0

({z| AG*z <b} = (){z| AG*z <b}.

k=0 k=0

Proof. Equivalence of the r-th and r + 1-th iterations implies
invariance of the r-th iteration polytope.

Note. This condition can be efficiently checked.
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Solving R-LD-LP exactly via LP

Theorem. If p(G) < 1, then convergence is finite. Moreover, the
number of steps needed is polynomial in the size of the input
(A,b,c,G).

Proof idea.

g Invariant ellipsoid: {x” Px < 1} 12
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Upper bound on the number of iterations

Find an invariant ellipsoid defined by a positive definite matrix P
Find a shrinkage factor v € (0, 1); i.e., a scalar satisfying GT PG < ~P
Find a scalar as > 0 such that

{Az < b} C {zT Pz < ay}

Find a scalar a; > 0 such that

{J'TPJ‘ <aj} C{Az < b}

Let -
/ I————log L
log
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Finding an invariant ellipsoid

e Computation of P.

To find an invariant ellipsoid for G. we solve the linear system

GTPG-P=-1I,

where [ is the n x n identity matrix. This is called the Lyapunov equation.

The matrix P will automatically turn out to be positive definite.

v PRINCETON == 14

UNIVERSITY mmd

RDO Page 14



Page 15

Finding the outer ellipsoid

e Computation of as. By solving. e.g.. n LPs, we can place our polytope {Axr < b} in a box;
i.e.. compute 2n scalars [;, u; such that

{Az < b} C{l; < x; <u;}.
We then bound 2! Pz = Zi,j P; jxizj term by term to get ap:
x9 = Z lllilX{RJ‘ iy, P;__jl',‘f_j. P,'_J' H,'IJ'. P,;.J'{,' H_‘,'}.
i,

This ensures that {l; < x; < wu;} C {.:""'P‘r < as}. Hence, {Ax < b} C {JJ-P.I' < as}.
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Finding the inner ellipsoid

e Computation of ay. Fori=1..... m. we compute a scalar 7; by solving the convex program
i = m}n{u?.r : 2T Px < 1}.
where a; is the i-th row of the constraint matrix A. This problem has a closed form solution:
ni = —\/al P~la;.
Note that P~! exists since P = 0. We then let

B2
= 111111{—’3}.
l

v PRINCETON =" 16

UNIVERSITY mmd

RDO Page 16



Page 17

Upper bounds on R-LD-LP via SDP

e Goal: Find the best invariant ellipsoid inside the original
polytope and optimize over that.

min ol
1P
P o
(;”PGW
X Prgl

L\?Z%; ¥ Pegl = ﬂ%sb] 4_5.;;;‘“1“% LoaTay ¥ (1-2472) V2

. X{?',c
Non-convex formulation
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Upper bounds on R-LD-LP via SDP

* If we parameterize in terms of P~ linstead, then it becomes

convex!
min - o't min - Cx
P " Q
P Yo Qy o
Dhames
G PG3P Dualify PYAPYS
7(T P%&? ( Schuy Complement if@/_;j} %/o
S
DVZ%, Y Pagl = H%s&] af@a;gl
e |'I{p§oi-<i C ]Dol}ffope ¢ __Pb.hr N (po|\3+ope)*£ (e “\'PJQFIJ)%
(Juml{f}
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Upper bounds on R-LD-LP via SDP
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Robust to switched
linear dynamics linear
programming (R-SLD-LP)
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R-SLD-LP

Robust to switched linear dynamics linear programming (R-SLD-LP)

X, = Gixp, 1 =1,...,s
G,

G
Models uncertainty and variations with time in the dynamics

min{c"x: AGx < b,VG € G*}
X

G™: set of all finite products of Gy, ..., G

vrmwmon 5 Input data: A, b, G, Gl! very Gs 21
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Feasible set of R-SLD-LP

It’s still convex, closed, and invariant (but typically much more
nasty).

Theorem. If the joint spectral radius of G4, ..., G is less than one,
then the feasible set of R-SLD-LP is a polytope.

1

-----

e Computation the JSR is a major topic in controls.
e Testing whether the JSR of two 47x47 matrices is is undecidable!
[Blondel, Tsitsiklis], [Blondel, Canterini]
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Lower and upper bounds for R-SLD-LP

To get lower bounds, truncate the sequence and solve an LP.
For example,

min{CTx:Ax < b,AGlx < b,AGlex < b, ...,AGlGZGlx < b}
X

To get upper bounds, same SDP idea works. Just require invariance
with respect to all matrices G;.

23
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SDP upper bounds for R-SLD-LP

e Unlike the linear case, there may be no invariant ellipsoid!

e But, we have a way to parameterize the convex hull of the
union of ellipsoids as invariant sets for R-SLD-LP using again

e |fthe JSR is less than one, there will always be a finite union of
ellipsoids that is invariant. The convex hull of this set is also

invariant.
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Recap

Robust to dynamics optimization (RDO):

n}cin{f(xo):xk € O, Vk; xp11 = g(x)}

e LP +linear dynamical system:

* Polynomial time solvable (in the most interesting case)
e LP + switched linear system:

* Lower bounds via LP

* Upper bounds via SDP
e Numerous other cases remain open

Preprint in pr ration:
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