Robust to Dynamics Optimization

Amir Ali Ahmadi

Princeton, ORFE

Oktay Gunluk

IBM Research

INFORMS 2014
Session on Optimization in Dynamics and Control

RDO Page 1

Robust to Dynamics Optimization (RDO)

An RDO is describe by two pieces of input:

- 1) An optimization problem: $\min_x \{f(x) : x \in \Omega\}$
- 2) A dynamical system: $x_{k+1} = g(x_k)$ or $\dot{x} = g(x)$

RDO is then the following problem:

(discrete time)
$$\min_{x_0}\{f(x_0):x_k\in\Omega,k=0,1,2,\ldots\}$$

(continuous time)
$$\min_{x_0}\{f(x_0): x(t;x_0)\in\Omega, \forall t\geq 0\}$$

Various RDO problems to study...

$$\min_{x_0} \{ f(x_0) \colon x_k \in \Omega, \forall k; \ x_{k+1} = g(x_k) \}$$

This talk:

Optimization Problem	Dynamics
Linear Program	Linear
Integer Program	Nonlinear
Semidefinite Program	Uncertain
Polynomial Program	Time-varying
Robust Linear Program	Discrete/continuous/hybrid of both
:	:

R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

Classical LP:

$$\min_{x} \{ c^T x : Ax \le b \}$$

Robust LP:

$$\min_{x} \{ c^T x : Ax \le b, \forall A \in \mathbb{A}, b \in \mathbb{B} \}$$

R-LD-LP:

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

Input data: A, b, c, G

Alternative form:

$$\min_{x} \{c^{T}x : Ax \le b, AGx \le b, AG^{2}x \le b, AG^{3}x \le b, \dots\}$$
(An infinite LP)

Feasible set of R-LD-LP: $\mathcal{S} := \bigcap_{k=0}^{\infty} \{x|\ AG^k x \leq b\}$

An example...

Obvious way to get lower bounds

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

Can get a sequence of lower bounds by solving finite LPs:

$$\min_{x}\{c^Tx : Ax \leq b, AGx \leq b, AG^2x \leq b, \dots, AG^rx \leq b\}$$

Natural questions:

- Is the optimal value of R-LD-LP achieved in a finite number of steps?
- Is the feasible set of R-LD-LP always a polytope?
- When it is, how large are the number of facets?
- How to get upper bounds?!
 - (We'll see soon: from semidefinite programming)

Feasible set of R-LD-LP

Lemma. The feasible set of R-LD-LP is **closed**, **convex**, **and invariant**.

Proof. Easy.
$$\mathcal{S} := \bigcap_{k=0}^{\infty} \{x | AG^k x \leq b\}$$

- But it may not be polyhedral.
- Even if it is, it may not be achieved at a finite level.

Feasible set of R-LD-LP $G = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$ $\begin{cases} AG^{k}x \leq b \end{cases}$ r=2 r=1 r = 8 1=00 PRINCETON UNIVERSITY UNIVERSITY 9

RDO Page 9

Feasible set of R-LD-LP r= 4 r= 8 r=00 PRINCETON UNIVERSITY 10 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Detecting finiteness

Lemma. Suppose for some r we have

$$\bigcap_{k=0}^{r} \{x|\ AG^k x \leq b\} = \bigcap_{k=0}^{r+1} \{x|\ AG^k x \leq b\}$$
 Then,
$$\bigcap_{k=0}^{\infty} \{x|\ AG^k x \leq b\} = \bigcap_{k=0}^{r} \{x|\ AG^k x \leq b\}.$$

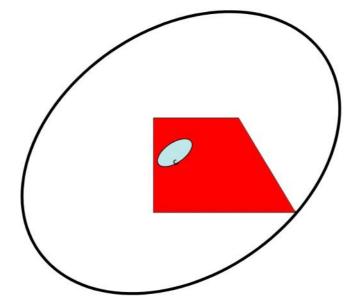
Proof. Equivalence of the r-th and r+1-th iterations implies invariance of the r-th iteration polytope.

Note. This condition can be efficiently checked.

Solving R-LD-LP exactly via LP

Theorem. If $\rho(G) < 1$, then convergence is finite. Moreover, the number of steps needed is polynomial in the size of the input (A, b, c, G).

Proof idea.



Invariant ellipsoid: $\{x^T P x \le 1\}$

Upper bound on the number of iterations

- \bullet Find an invariant ellipsoid defined by a positive definite matrix P
- Find a shrinkage factor $\gamma \in (0,1);$ i.e., a scalar satisfying $G^TPG \preceq \gamma P$
- Find a scalar $\alpha_2 > 0$ such that

$$\{Ax \le b\} \subseteq \{x^T P x \le \alpha_2\}$$

• Find a scalar $\alpha_1 > 0$ such that

$$\{x^T P x \le \alpha_1\} \subseteq \{Ax \le b\}$$

• Let

$$r = \lceil \frac{\log \frac{\alpha_1}{\alpha_2}}{\log \gamma} \rceil$$

Finding an invariant ellipsoid

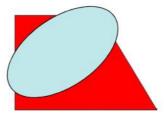
\bullet Computation of P.

To find an invariant ellipsoid for G, we solve the linear system

$$G^T P G - P = -I,$$

where I is the $n \times n$ identity matrix. This is called the Lyapunov equation.

The matrix P will automatically turn out to be positive definite.



Finding the outer ellipsoid

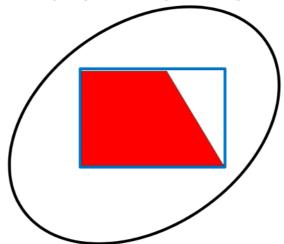
• Computation of α_2 . By solving, e.g., n LPs, we can place our polytope $\{Ax \leq b\}$ in a box; i.e., compute 2n scalars l_i, u_i such that

$${Ax \le b} \subseteq {l_i \le x_i \le u_i}.$$

We then bound $x^T P x = \sum_{i,j} P_{i,j} x_i x_j$ term by term to get α_2 :

$$\alpha_2 = \sum_{i,j} \max\{P_{i,j}u_iu_j, P_{i,j}l_il_j, P_{i,j}u_il_j, P_{i,j}l_iu_j\}.$$

This ensures that $\{l_i \leq x_i \leq u_i\} \subseteq \{x^T P x \leq \alpha_2\}$. Hence, $\{Ax \leq b\} \subseteq \{x^T P x \leq \alpha_2\}$.



Finding the inner ellipsoid

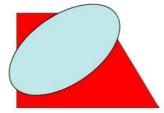
• Computation of α_1 . For $i=1,\ldots,m$, we compute a scalar η_i by solving the convex program $\eta_i := \min_x \{a_i^T x : x^T P x \leq 1\},$

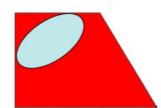
where a_i is the *i*-th row of the constraint matrix A. This problem has a closed form solution:

$$\eta_i = -\sqrt{a_i^T P^{-1} a_i}.$$

Note that P^{-1} exists since $P \succ 0$. We then let

$$\alpha_1 = \min_i \{ \frac{b_i^2}{\eta_i^2} \}.$$





Upper bounds on R-LD-LP via SDP

• Goal: Find the best invariant ellipsoid inside the original polytope and optimize over that.

Min
$$c^T \chi$$
 χ, p

$$P \neq 0$$

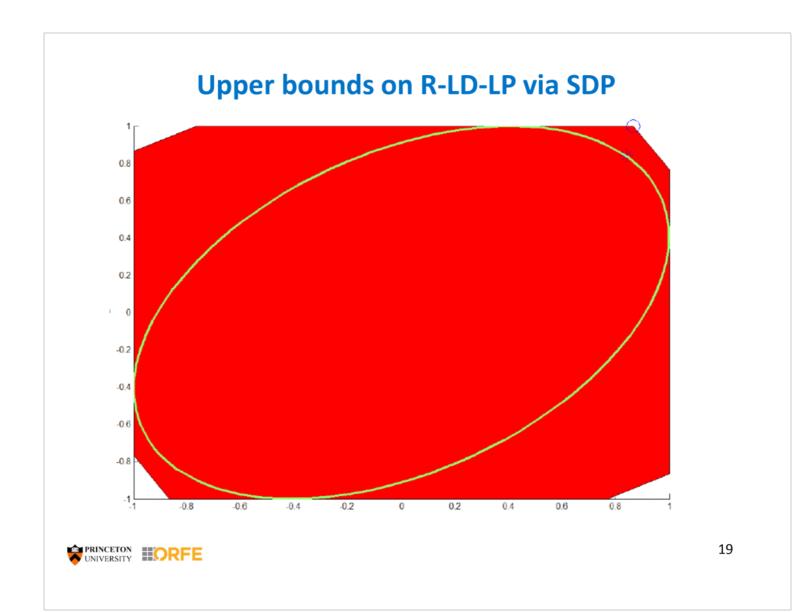
$$G^T P G \neq P$$

$$\chi^T P \chi \leq 1$$

$$\left[\forall z, z^T P z \leq 1 \Rightarrow A z \leq b \right] \xrightarrow{S-2emma} b-q_1^T z_2 \chi_i \left(1-z^T P z\right) \quad \forall z$$
Non-convex formulation

Upper bounds on R-LD-LP via SDP

 If we parameterize in terms of P⁻¹instead, then it becomes convex!

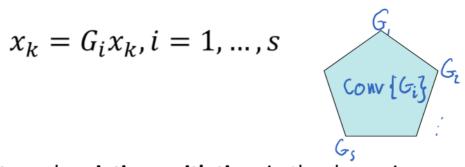


Robust to *switched*linear dynamics linear programming (R-SLD-LP)

R-SLD-LP

Robust to switched linear dynamics linear programming (R-SLD-LP)

$$x_k = G_i x_k$$
, $i = 1, \dots$, s



Models uncertainty and variations with time in the dynamics

$$\min_{x} \{ c^T x : AGx \le b, \forall G \in \mathbb{G}^* \} \quad \text{(An infinite LP)}$$

 \mathbb{G}^* : set of all finite products of G_1, \dots, G_s

Input data: A, b, c, G_1, \dots, G_s

Feasible set of R-SLD-LP

It's still convex, closed, and invariant (but typically much more nasty).

Theorem. If the *joint spectral radius* of $G_1, ..., G_S$ is less than one, then the feasible set of R-SLD-LP is a polytope.

Joint spectral radius (JSR):

$$\rho(G_1, \dots, G_S) = \lim_{k \to \infty} \max_{\sigma \in \{1, \dots, S\}^m} ||G_{\sigma_1} \cdots G_{\sigma_k}||^{\frac{1}{k}}$$

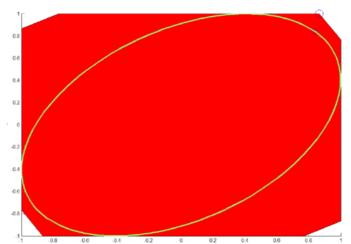
- Computation the JSR is a major topic in controls.
- Testing whether the JSR of two 47x47 matrices is is undecidable! [Blondel, Tsitsiklis], [Blondel, Canterini]

Lower and upper bounds for R-SLD-LP

To get lower bounds, truncate the sequence and solve an LP. For example,

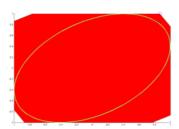
$$\min_{x} \{c^T x : Ax \leq b, AG_1 x \leq b, AG_1 G_2 x \leq b, \dots, AG_1 G_2 G_1 x \leq b\}$$

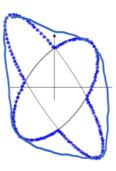
To get upper bounds, same SDP idea works. Just require invariance with respect to all matrices G_i .



SDP upper bounds for R-SLD-LP

- Unlike the linear case, there may be no invariant ellipsoid!
- But, we have a way to parameterize the convex hull of the union of ellipsoids as invariant sets for R-SLD-LP using again SDP.
- If the JSR is less than one, there will always be a finite union of ellipsoids that is invariant. The convex hull of this set is also invariant.





Recap

Robust to dynamics optimization (RDO):

$$\min_{x_0} \{ f(x_0) : x_k \in \Omega, \forall k; \ x_{k+1} = g(x_k) \}$$

- LP + linear dynamical system:
 - Polynomial time solvable (in the most interesting case)
- LP + switched linear system:
 - Lower bounds via LP
 - Upper bounds via SDP
- Numerous other cases remain open

RDO Page 25

PRINCETON UNIVERSITY

Preprint in preparation: http://aaa.princeton.edu