Robust to Dynamics Optimization

Amir Ali Ahmadi

Princeton, ORFE

Oktay Gunluk

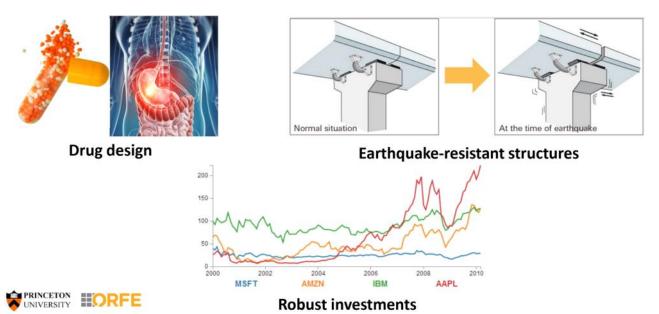
IBM Research

ISMP 2015

Session on Synergies Between Optimization and Robust Control

The setting & motivating applications

- You solve a constrained optimization problem today
- An external dynamical system may move your optimal point in the future and make it infeasible
- You want your initial decision to be "safe enough" to not let this happen



Robust to Dynamics Optimization (RDO)

An RDO is describe by two pieces of input:

1) An optimization problem:
$$\min_x \{f(x) : x \in \Omega\}$$

2) A dynamical system:
$$x_{k+1} = g(x_k)$$
 or $\dot{x} = g(x)$

RDO is then the following problem:

(discrete time)
$$\min_{x_0} \{f(x_0) : x_k \in \Omega, k = 0, 1, 2, \ldots\}$$

(continuous time)
$$\min_{x_0}\{f(x_0):x(t;x_0)\in\Omega,\forall t\geq 0\}$$

Various RDO problems to study...

$$\min_{x_0} \{ f(x_0) \colon x_k \in \Omega, \forall k; \ x_{k+1} = g(x_k) \}$$

This talk:

Optimization Problem	Dynamics	
Linear Program	Linear	
Integer Program	Nonlinear	
Semidefinite Program	Uncertain	
Polynomial Program	Time-varying	
Robust Linear Program	Discrete/continuous/hybrid of both	
:	:	

R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

Classical LP:

$$\min_{x} \{ c^T x : Ax \le b \}$$

Robust LP:

$$\min_{x} \{ c^T x : Ax \le b, \forall A \in \mathbb{A}, b \in \mathbb{B} \}$$

R-LD-LP:

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

Input data: A, b, c, G

Alternative form:

$$\min_{x} \{c^{T}x : Ax \le b, AGx \le b, AG^{2}x \le b, AG^{3}x \le b, \dots\}$$
(An infinite LP)

Feasible set of R-LD-LP: $\mathcal{S} := \bigcap_{k=0}^{\infty} \{x|\ AG^k x \leq b\}$ Frinceton HORFE k=0

An example...

$$\min_{x_0} \{c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k\}$$

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 3 \end{bmatrix}, c = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, G = \begin{bmatrix} 0.6 & -0.4 \\ 0.8 & 0.5 \end{bmatrix}$$

$$\{A \in x \le b\}$$

Obvious way to get lower bounds

$$\min_{x_0} \{ c^T x_0 : A x_k \le b, k = 0, 1, 2, \dots; x_{k+1} = G x_k \}$$

Can get a sequence of lower bounds by solving finite LPs:

$$\min_{x} \{ c^T x : Ax \le b, AGx \le b, AG^2 x \le b, \dots, AG^r x \le b \}$$

Natural questions:

- Is the optimal value of R-LD-LP achieved in a finite number of steps?
- Is the feasible set of R-LD-LP always a polytope?
- When it is, how large are the number of facets?
- How to get upper bounds?!
 - (We'll see soon: from **semidefinite programming**)

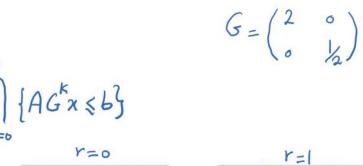
Feasible set of R-LD-LP

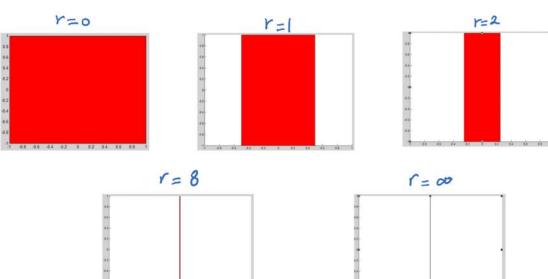
Lemma. The feasible set of R-LD-LP is **closed**, **convex**, **and invariant**.

Proof. Easy.
$$\mathcal{S} := \bigcap_{k=0}^{\infty} \{x | AG^k x \leq b\}$$

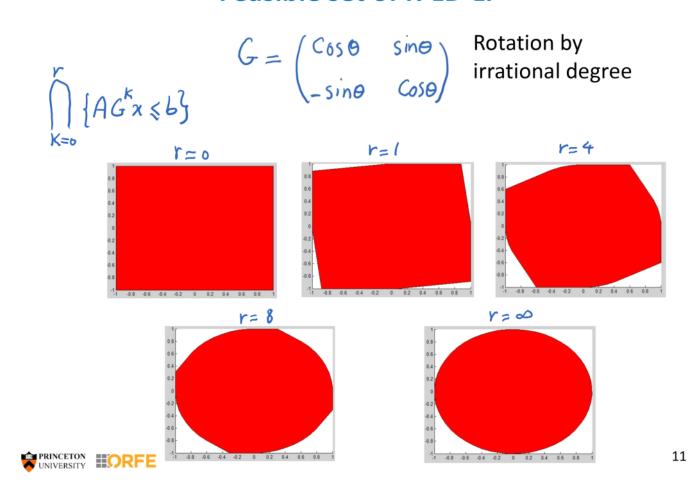
- But it may not be polyhedral.
- Even if it is, it may not be achieved at a finite level.

Feasible set of R-LD-LP





Feasible set of R-LD-LP



Detecting termination

Lemma. Let
$$S_r := \bigcap_{k=0}^r \{x \mid AG^kx \leq b\}$$
.

Then, $S_r = S_{r+1} \implies S_r = S_{\infty}$.

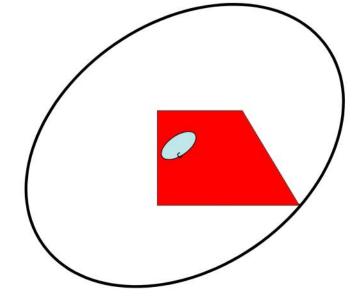
Proof.
$$\chi \in S_r \Rightarrow \chi \in S_{r+1} \Rightarrow G \chi \in S_r$$
, Repeat.

Note. The condition $S_r = S_{r+1}$ can be efficiently checked.

Solving R-LD-LP exactly via LP

Theorem. If $\rho(G) < 1$, then convergence is finite. Moreover, the number of steps needed is polynomial in the size of the input (A, b, c, G).

Proof idea.



Invariant ellipsoid: $\{x^T P x \le 1\}$

Upper bound on the number of iterations

- \bullet Find an invariant ellipsoid defined by a positive definite matrix P
- Find a shrinkage factor $\gamma \in (0,1);$ i.e., a scalar satisfying $G^TPG \preceq \gamma P$
- Find a scalar $\alpha_2 > 0$ such that

$${Ax \le b} \subseteq {x^T Px \le \alpha_2}$$

• Find a scalar $\alpha_1 > 0$ such that

$$\{x^T P x \le \alpha_1\} \subseteq \{Ax \le b\}$$

• Let

$$r = \lceil \frac{\log \frac{\alpha_1}{\alpha_2}}{\log \gamma} \rceil$$

Finding an invariant ellipsoid

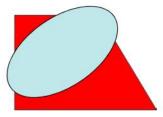
\bullet Computation of P.

To find an invariant ellipsoid for G, we solve the linear system

$$G^T P G - P = -I$$
,

where I is the $n \times n$ identity matrix. This is called the Lyapunov equation.

The matrix P will automatically turn out to be positive definite.



Finding the shrinkage factor

• Computation of γ .

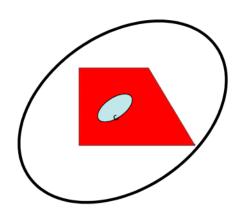
$$\gamma = 1 - \frac{1}{\max_{i} \{ P_{ii} + \sum_{j \neq i} |P_{i,j}| \}}.$$

Proof idea.

$$x^T G^T P G x = x^T P x - x^T x \\ \leq x^T P x (1 - \eta)$$

where η is any number such that

$$\eta x^T P x \leq x^T x$$



Shrinkage is at least
$$1 - \frac{1}{\lambda_{max}(P)}$$

$$\lambda_{max}(P) \leq \max_i \{P_{ii} + \sum_{j \neq i} |P_{i,j}|\}.$$
 (Bound from Greshgorin's circle theorem)

Finding the outer ellipsoid

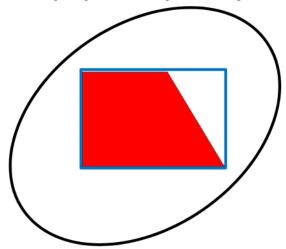
• Computation of α_2 . By solving, e.g., n LPs, we can place our polytope $\{Ax \leq b\}$ in a box; i.e., compute 2n scalars l_i, u_i such that

$${Ax \le b} \subseteq {l_i \le x_i \le u_i}.$$

We then bound $x^T P x = \sum_{i,j} P_{i,j} x_i x_j$ term by term to get α_2 :

$$\alpha_2 = \sum_{i,j} \max\{P_{i,j}u_iu_j, P_{i,j}l_il_j, P_{i,j}u_il_j, P_{i,j}l_iu_j\}.$$

This ensures that $\{l_i \leq x_i \leq u_i\} \subseteq \{x^T P x \leq \alpha_2\}$. Hence, $\{Ax \leq b\} \subseteq \{x^T P x \leq \alpha_2\}$.



Finding the inner ellipsoid

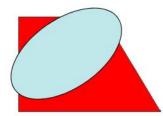
• Computation of α_1 . For $i=1,\ldots,m$, we compute a scalar η_i by solving the convex program $\eta_i \coloneqq \min_x \{a_i^T x : x^T P x \le 1\},$

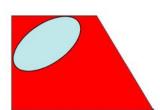
where a_i is the *i*-th row of the constraint matrix A. This problem has a closed form solution:

$$\eta_i = -\sqrt{a_i^T P^{-1} a_i}.$$

Note that P^{-1} exists since $P \succ 0$. We then let

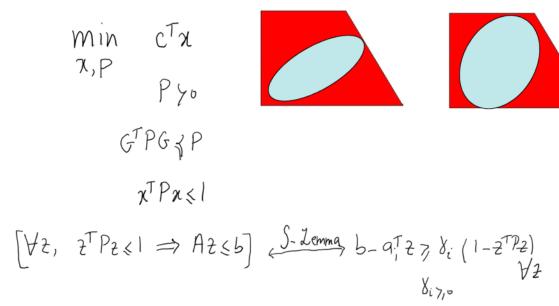
$$\alpha_1 = \min_i \{ \frac{b_i^2}{\eta_i^2} \}.$$





Upper bounds on R-LD-LP via SDP

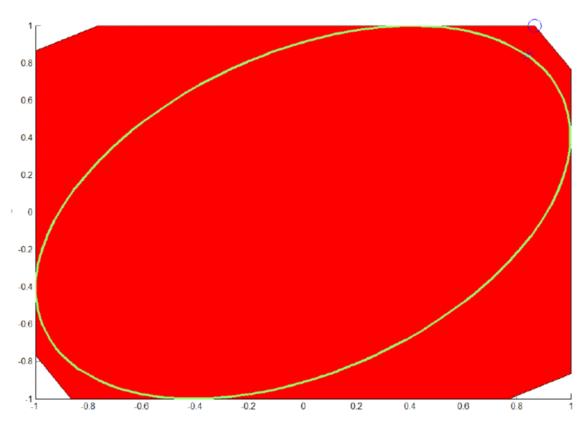
• Goal: Find the best invariant ellipsoid inside the original polytope and optimize over that.



Non-convex formulation

Upper bounds on R-LD-LP via SDP

If we parameterize in terms of P^{-1} instead, then it becomes convex!

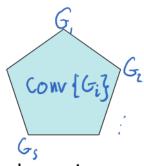


LP
+
Uncertain & time-varying
linear systems

R-ULD-LP

Robust to uncertain linear dynamics linear programming (R-ULD-LP)

$$\chi_{k+1} \in \text{conv}\{G_1, \dots, G_s\} \chi_k$$



Models uncertainty and variations with time in the dynamics

$$\min_{x} \{ c^T x : AGx \le b, \forall G \in \mathbb{G}^* \} \quad \text{(An infinite LP)}$$

 \mathbb{G}^* : set of all finite products of G_1, \dots, G_s

Input data: A, b, c, G_1, \dots, G_s

Feasible set of R-ULD-LP

It's still convex, closed, and invariant (but typically much more nasty).

Theorem. If the *joint spectral radius* of $G_1, ..., G_s$ is less than one, then the feasible set is a polytope.

Joint spectral radius (JSR):

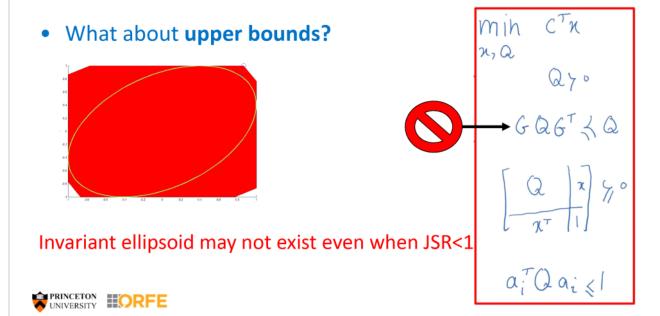
$$\rho(G_1, \dots, G_S) = \lim_{k \to \infty} \max_{\sigma \in \{1, \dots, S\}^m} ||G_{\sigma_1} \cdots G_{\sigma_k}||^{\frac{1}{k}}$$

 Unlike the spectral radius, computation of the JSR is difficult (Testing if JSR<=1is undecidable already for two 47x47 matrices [Blondel, Tsitsiklis], [Blondel, Canterini])

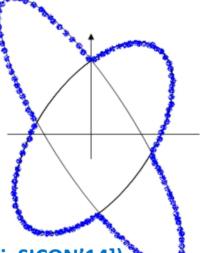
Lower and upper bounds for R-ULD-LP

• To get **lower bounds**, truncate the sequence and solve an LP. For example,

 $\min_{x} \{ c^T x : Ax \le b, AG_1 x \le b, AG_1 G_2 x \le b, \dots, AG_1 G_2 G_1 x \le b \}$



Idea: search instead for union of ellipsoids



Theorem ([AAA, Jungers, Parrilo, Roozbehani, SICON'14])

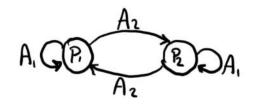
If JSR<1,

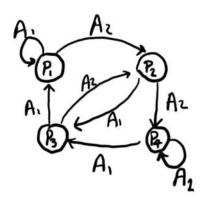
then there exists an invariant set which is a union of k ellipsoids. Moreover,

- We give you a bound on *k*.
- We tell you how to find the k ellipsoids by SDP.

The SDPs have a recipe!

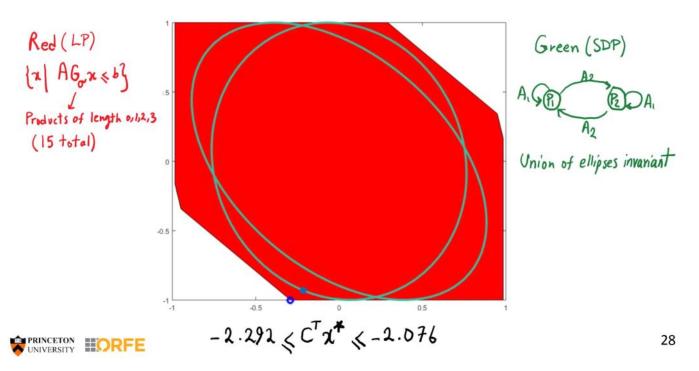
De Bruijn graphs





A numerical example

$$\{A_{\chi} \leq b\} = \begin{bmatrix} & & & \\ & & \\ & & & \end{bmatrix}, c = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, G_{1} = 0.254 \begin{bmatrix} -1 & -1 \\ -4 & 0 \end{bmatrix}, G_{2} = 0.254 \begin{bmatrix} 3 & 3 \\ -2 & 1 \end{bmatrix}$$

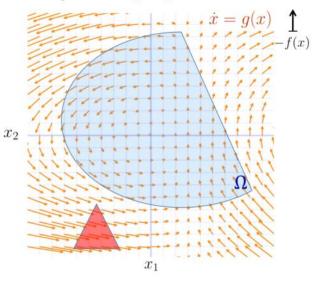


RDO_ISMP15 Page 28

The broader perspective

Optimization problems with dynamical systems (DS) constraints

minimize f(x)subject to $x \in \Omega \cap \Omega_{DS}$.



Optimization Problem " f, Ω "	Type of Dynamical System "g"	DS Constraint " Ω_{DS} "
Linear program*	Linear*	Invariance*
Convex quadratic program*	Linear and uncertain/stochastic	Inclusion in region of attraction
Semidefinite program	Linear and time-varying*	Collision avoidance
Robust linear program	Nonlinear (polynomial)	Reachability
Polynomial program	Nonlinear and time-varying	Orbital stability
Integer program	Discrete/continuous/hybrid of both	Stochastic stability
1	1	1