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The setting & motivating applications

e You solve a constrained optimization problem today

e An external dynamical system may move your optimal point in the future
and make it infeasible

e You want your initial decision to be “safe enough” to not let this happen

0
2000 2002 2004 2006 2008 2010
MSFT AMZN IBM AAPL

VPRINCETON EADEE .
UNIVERSITY mmd IS Robust investments

RDO_ISMP15 Page 2



Robust to Dynamics Optimization (RDO)

An RDO is describe by two pieces of input:
1) An optimization problem: mln{f(m) C L€ Q}
T

2) Adynamical system:  Tpi1 = Gg(Tr) or T = g(»L)

RDO is then the following problem:

(discrete time) min{ f(xo) : 1 € Q,k=0,1,2,...}
o

(continuous time)  in{ f (o) : x(t: x0) € Q,Vt > 0}
x(
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Various RDO problems to study...

rr;in{f(xo):xk € O, Vk; xp41 = g}
0

This talk:

Optimization Problem | Dynamics

Linear Program Linear

Integer Program Nonlinear

Semidefinite Program Uncertain

Polynomial Program Time-varying

Robust Linear Program Discrete /continuous/hybrid of both
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R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

min{c”x: Ax < b}
X

min{c"x: Ax < b,VA € A, b € B}
X

111111{(31 xo: Axp < b,k=0,1,2,...;2511 = Gy}
T
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R-LD-LP

Robust to linear dynamics linear programming (R-LD-LP)

min{c' zg : Axp < b,k =0,1,2,... ;2041 = Gay)

I()

Input data: A, b, c, G

Alternative form:

min{c’x: Ax < b,AGx < b,AG*x < b,AG>x < b, ...}
X

Feasible set of R-LD-LP: o0
S:= ({z| AG*z < b}
Wihen B k=0
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An example...

111111{c 10 Ay < b, k=10,1,2,...5801 =G0}

o
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Obvious way to get lower bounds

111111{0 :Lo App < b k= 0.1,2;...1%1 — Gig}

o

Can get a sequence of lower bounds by solving finite LPs:

min{cTx:Ax < b,AGx < b,AG?’x < b, ..., AG"x < b}
X

Is the optimal value of R-LD-LP achieved in a finite number of steps?
Is the feasible set of R-LD-LP always a polytope?
When it is, how large are the number of facets?
How to get upper bounds?!
* (WEe’ll see soon: from semidefinite programming)
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Feasible set of R-LD-LP

Lemma. The feasible set of R-LD-LP is closed, convex, and invariant.

o0
Proof. Easy. S = ﬂ {z| AGFz < b}
k=0

e But it may not be polyhedral.
e Even ifitis, it may not be achieved at a finite level.
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Feasible set of R-LD-LP

C._ [Cese smey Rotation by
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Detecting termination

Lemma. el S‘r:: Q {xl AGKISB}-
Then, Sr-_—_Sm = 5=5_.

Proof. A€ S,, — 0 - S"H = Gue S,.) Repeat.

Note. The condition S, = S, 1 can be efficiently checked.
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Solving R-LD-LP exactly via LP

Theorem. If p(G) < 1, then convergence is finite. Moreover, the

number of steps needed is polynomial in the size of the input
(4, b.,¢,G).

(KECA": P‘A):& “Ax")é)

Proof idea.
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Upper bound on the number of iterations

Find an invariant ellipsoid defined by a positive definite matrix P
Find a shrinkage factor v € (0, 1); i.e., a scalar satisfying GT PG < ~P
Find a scalar as > 0 such that

{Az < b} C {z" Pz < as}

Find a scalar ar; > 0 such that

{.l'TP.l' <aj} C{Az < b}

Let

I_log %;
5 —
log
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Finding an invariant ellipsoid

e Computation of P.

To find an invariant ellipsoid for G. we solve the linear system

TP —P=~I,

where [ is the n x n identity matrix. This is called the Lyapunov equation.

The matrix P will automatically turn out to be positive definite.
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Finding the shrinkage factor

o Computation of ~.
1
lll‘ch-g_{P-,'-g_ + Z;j#i ‘Pf}” |

y=1-

Proof idea.
rTGT PGx TPy — 2Ty
2T Px(1 —n)

where 7) is any number such that

IA I

nel Po < 2Tx

Shrinkage is at least 1 — ! Amaz(P) < max{P;; + E IPE.jl}°
Amax(P) L .
JFi
vﬁﬁ'.:fﬂl?ﬁ 2= (Bound from Greshgorin’s circle theorem) ¢
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Finding the outer ellipsoid

e Computation of as. By solving. e.g.. n LPs, we can place our polytope {Axr < b} in a box;
i.e.. compute 2n scalars [;, u; such that

{Az < b} C{l; < x; <u;}.
We then bound 2! Pr = Zi,j P; jxizj term by term to get ap:
g = Z lllilX{RJ‘ iy, P;__jl',‘f_j. P,'_J' H,'IJ'. P,;.J'{,' H_‘,'}.
ivj

This ensures that {l; < x; < wu;} C {.:""'P‘r < as}. Hence, {Ax < b} C {JJ-P.I' < as}.
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Finding the inner ellipsoid

e Computation of ay. Fori=1..... m. we compute a scalar 7; by solving the convex program
) i= lllill{(ll-l x:al Pr <1},
axr
where a; is the i-th row of the constraint matrix A. This problem has a closed form solution:

My = —\/u'jlvp_'(l,-.

Note that P~ exists since P > 0. We then let

9
& )5
ap = min{—5}.
i 1},.-
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Upper bounds on R-LD-LP via SDP

e Goal: Find the best invariant ellipsoid inside the original
polytope and optimize over that.

min - ol
KPP

P Yo

({"PG{P

W Pagl

Dv‘%, ¥ Pegl = Azct) 3L, LoaT27 ¥ (1-27)

7
- 4

Non-convex formulation
TaveRay 5
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Upper bounds on R-LD-LP via SDP

* |If we parameterize in terms of P linstead, then it becomes

convex!
min - ot min - C7x
P " Q
P Yo Qy o
Dhames
G PG4 P Dualify PYAPYS
'HP%\(f ( Schuy Complement if@/_;j} %/o
S
DVZ%, Y Pagl = H%s&] af@a;gl
e |'h'p§oi-cl C ]Dol}ffope ¢ __Pb.hr N (po|\3+ope)*£ (e “\IPJ'DFIJ)*
(Juml{f}
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LP
-

Uncertain & time-varying
linear systems
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R-ULD-LP

Robust to uncertain linear dynamics linear programming (R-ULD-LP)
X E conviG Gj L
K+ JTTs) Tk G
Gy
Models uncertainty and variations with time in the dynamics

min{c’x: AGx < b,VG € G*}
X

G™: set of all finite products of Gy, ..., G
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Feasible set of R-ULD-LP

It’s still convex, closed, and invariant (but typically much more
nasty).

Theorem. If the joint spectral radius of G4, ..., G is less than one,
then the feasible set is a polytope.

1
p(Gy, ..., Gg) = }11_1}30 MaXqse(q,..,s}™ ||Gal GokH"'

e Unlike the spectral radius, computation of the JSR is difficult
(Testing if JSR<=1is undecidable already for two 47x47 matrices
[Blondel, Tsitsiklis], [Blondel, Canterini])
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e To get lower bounds, truncate the sequence and solve an LP.

e What about upper bounds?

For example,

min{CTx:Ax < b,AGlx < b,AGlex < b, ...,AGlchlx < b}
X

Lower and upper bounds for R-ULD-LP

Og

Invariant ellipsoid may not exist even when JSR<1

¥

PRINCETON ==
UNIVERSITY ==

RDO_ISMP15 Page 25

mih  C7x
n, Q
QY o

L 606740

i
|

aQa; ¢l

25



Idea: search instead for union of ellipsoids

Theorem ([AAA, Jungers, Parrilo, Roozbehani, SICON’14])
If JSR<1,

then there exists an invariant set which is a union of k ellipsoids.
Moreover,

e We give you a bound on k.
e We tell you how to find the k ellipsoids by SDP.
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The SDPs have a recipe!
Ag
B D>® = Apmsh

De Bru 4N ?rqphs

A
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A numerical example
(u1)
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The broader perspective

Optimization problems with dynamical systems (DS) constraints

minimize  f(x)
subject to x € QN Qpg.

Optimization Problem “f. Q" | Type of Dynamical System “y” | DS Constraint “Qps”
Linear program™ Linear* Invariance®
Convex quadratic program™* Linear and uncertain/stochastic Inclusion in region of attraction
Semidefinite program Linear and time-varying* Collision avoidance
Robust linear program Nonlinear (polynomial) Reachability
Polynomial program Nonlinear and time-varying Orbital stability
Integer program Discrete /continuous /hybrid of both | Stochastic stability
29
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