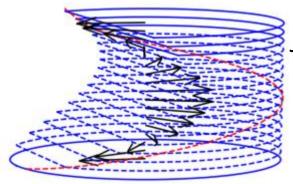
Time-Varying SDPs

Bachir El Khadir

July 4th, ISMP 2018



Joint work with Amir Ali Ahmadi

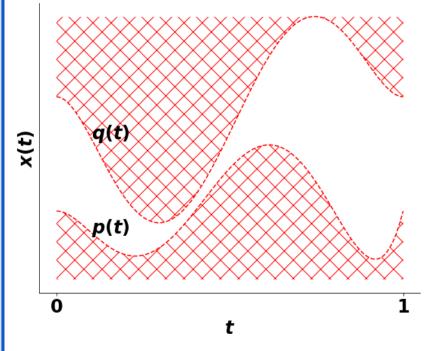
Toy example

Problem:

Find a path $x:[0,1]\to\mathbb{R}$

with minimum length
$$\int_0^1 \sqrt{1+x'(t)^2} \; \mathrm{d}t$$

Such that



Framework

SDP: Find $x \in \mathbb{R}^n$ that minimizes $\langle c, x \rangle$ such that

$$A_0 + \sum A_i x_i \succeq 0$$

$$A_i \in \mathbb{R}^{m \times m}$$

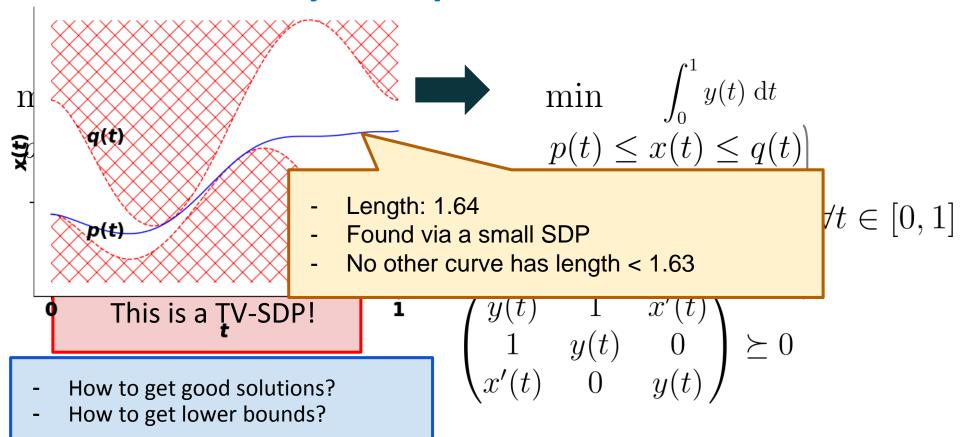
TV-SDP: Find $x:[0,1]\to\mathbb{R}^n$ that minimizes $\int_0^1\langle c(t),x(t)\rangle dt$ such that $\forall t\in[0,1]$

$$Fx(t) := A_0(t) + \sum A_i(t)t)(t)(t) \sum 0 \int_0^t D_i(t,s)x_i(s) ds \succeq 0$$

F is linear operator that takes a vectorvalued function x(t) and outputs a matrix-valued function Fx(t)

Data: c, A_i , D_i polynomials. Polynomials are general enough.

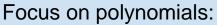
Toy example - continued



Plan

Primal approach: Getting upper bounds.

Any feasible solution will do!



- Smooth
- Tractable

When are polynomial solutions optimal?

Optimal value of TV-SDP

When are these lower bounds tight?

Dual approach: Getting lower bounds.

Finite dimensional outer-approxmiation!

Primal approach

Our Constraint:

 $Fx(t) \succeq 0 \quad \forall t \in [0,1]$

Idea: Restrict the search space to polynomials of a given degree.

$$x(t) \in \mathbb{R}^n_{\hat{d}}[t] \implies Fx(t) \in \mathbb{R}^{m \times m}_d[t]$$

$$p(x_1,\ldots,x_n)$$
 sos if $p(x)=\sum q_i(x)^2$

LP case studied in [Bampou&Kuhn 12]

SOS polynomials: $p(x_1,\ldots,x_n)$ sos if $p(x)=\sum q_i(x)^2$ | Positivstellensatz [Dette&Studden 02] For $X(t)\in\mathbb{R}_d^{m\times m}[t]$ $X(t)\succeq 0 \ \forall t\in[0,1]$ if and only if $y^TX(t)y=p_0(t,y)+tp_1(t,y)$

$$y^{T}X(t)y = p_{0}(t,y) + tp_{1}(t,y) + (1-t)p_{2}(t,y) + t(1-t)p_{3}(t,y)$$

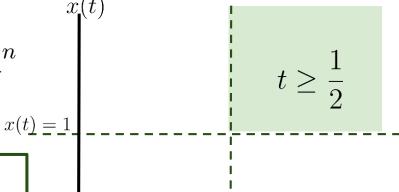
with p_0, \dots, p_3 SOS of deg. 2 in y and d in t.

Takeaway: (Small) SDP can find the best polynomial solution to a TV-SDP

Optimality of polynomial solutions (1/2)

Strategy:

- Take any feasible solution $x:[0,1] \to \mathbb{R}^n$
- Approximate it with a polynomial



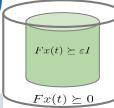
What can go wrong?

A "discontinuous" TV-SDP

$$\left| (t - \frac{1}{2})x(t) \ge 0, (t - \frac{1}{2})(x(t) - 1) \ge 0 \right|$$

Optimality of polynomial solutions (2/2)

Definition (Strict feasiblity) $\exists \varepsilon > 0 \ \exists x : [0,1] \to \mathbb{R}^n \ Fx(t) \succeq \varepsilon I$

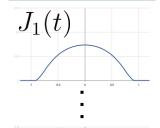


Mollification

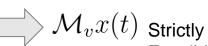
Continuous func.

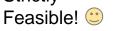
Weierstrass

x(t) strictly feasible



 $J_v(t)$





Polynomial Solution

- $1)Fx(t) \succeq 0 \implies \mathcal{M}_v Fx(t) \succeq 0$
- $2)\sup_{t} \|\mathcal{M}_{v}Fx(t) F\mathcal{M}_{v}x(t)\| \underset{v \to \infty}{\longrightarrow} 0$

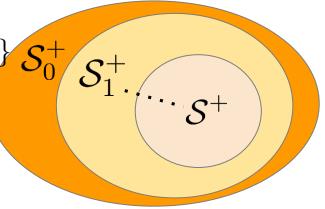
Theorem (Ahmadi, BEK)

Strict feasibility \implies Optimality of polynomials

Dual approach (1/3)

Our constraint
$$Fx \in \mathcal{S}^+:=\{X \mid X(t) \succeq 0 \ \forall t \in [0,1]\}$$

Inner product $\langle X, Y \rangle := \int_0^1 Tr(X(t)Y(t)) dt$ \mathcal{S}^+ is self dual $X \in \mathcal{S}^+ \iff \langle X, Y \rangle \geq 0 \ \forall Y \in \mathcal{S}^+$



Idea:

Restrict Y to be a polynomial of degree < d

$$\mathcal{S}_d^+ := \{ X \mid \langle X, Y \rangle \ge 0 \ \forall Y \in \mathcal{S}^+ \cap \mathbb{R}_d^{m \times m}[t] \}$$

Dual approach (2/3)

$$\mathcal{S}^{+} := \{X \mid \langle X, Y \rangle \geq 0 \ \forall Y \in \mathcal{S}^{+}\} \quad \text{Initial feasible set}$$

$$\mathcal{S}^{+}_{d} := \{X \mid \langle X, Y \rangle \geq 0 \ \forall Y \in \mathcal{S}^{+} \cap \mathbb{R}^{m \times m}_{d}[t]\} \quad \text{Outer-approximation}$$

$$Fx \in \mathcal{S}^{+}_{d} \iff \forall Y \in \mathcal{S}^{+} \cap \mathbb{R}^{m \times m}_{d}[t] \qquad \langle Fx, Y \rangle \geq 0$$

$$\langle x, F^{*}Y \rangle \geq 0$$

$$= \int_{0}^{1} \langle x(t), F^{*}Y(t) \rangle \mathrm{d}t \qquad \text{Depends only on the first moments of } x$$

$$\iff x \in \text{dual of } F^{*}(\mathcal{S}^{+} \cap \mathbb{R}^{m \times m}_{d}[t]) \qquad \text{Semidefinite}$$

Takeaway: Lower bound at level d can be obtained via SDP

representable

Dual Approach (3/3)

Level	d		∞	
Optimal value	v^d	2	v^{∞}	
Optimal solution	x^d	_? ⇒	x^{∞}	
Constraint	$\langle Fx, Y \rangle \ge 0$ $\forall Y \in \mathcal{S}^+ \cap \mathbb{R}_d^{m \times m}$	$\langle F \rangle$	$\forall X, Y \geq 0$ $\forall Y \in S^+$	$Fx(t) \succeq 0$

Weak convergence

$$\langle x^d, \cdot \rangle \to \langle x^\infty, \cdot \rangle$$

Boundedness

$$\forall p \in \mathbb{R}_d^n[t]$$
 $p(t) \ge 0$
 $|\langle x^d, p \rangle| \le M\langle 1, p \rangle$

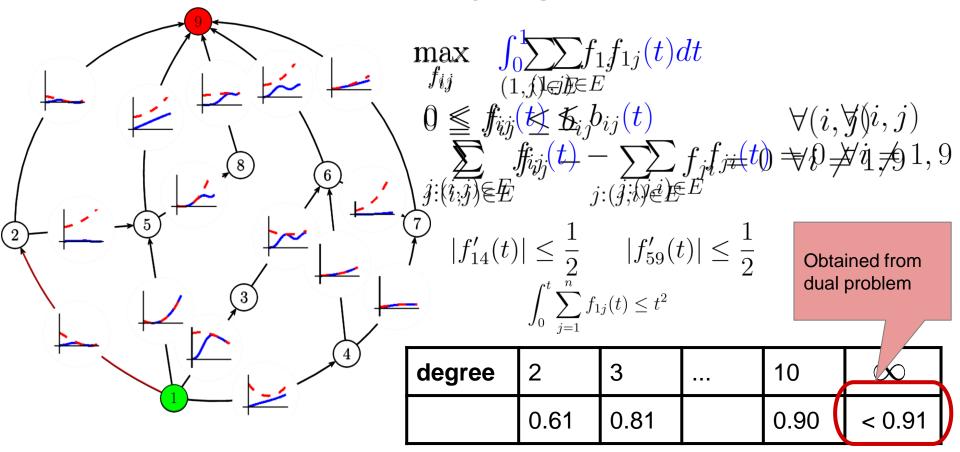
Theorem (Ahmadi, BEK)

Boundedness of TV-SDP ______ Lower bounds tight

Compactness [Lasserre]

A bounded sequence has a weakly convergent subsequence

TV-maxflow



Pareto Curve approximation

 $\min \langle c_1, x \rangle$ and $\langle c_2, x \rangle$ s.t. $x \in \mathcal{C}$

Pareto Curve:

 $\{(\langle c_1, x(t) \rangle, \langle c_2, x(t) \rangle) \mid t \in [0, 1]\}$ $x(t) := \underset{\langle c_2, x(t) \rangle}{\operatorname{arg min}} \langle c_1, x(t) \rangle$ $\langle c_2, x(t) \rangle \leq t \quad x(t) \in \mathcal{C}$

Idea: $\min \int_0^{\cdot} \langle c_1, x(t) \rangle dt$ $\langle c_2, x(t) \rangle \leq t \quad x(t) \in \mathcal{C}$

Takeaway: This is a TV-SDP!

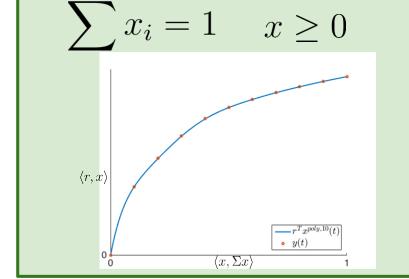
7

[Gorissen, Hertog '12]

[Magron, Henrion, Lasserre '14]

Markowitz Portfolio Theory

 $\max \langle r, x \rangle \quad \min \langle x, \Sigma x \rangle$



Thanks!

Want to know more? bachirelkhadir.com

