
Robust-to-Dynamics Linear Programming

Amir Ali Ahmad and Oktay Günlük

Abstract— We consider a class of robust optimization prob-
lems that we call “robust-to-dynamics optimization” (RDO).
The input to an RDO problem is twofold: (i) a mathematical
program (e.g., an LP, SDP, IP, etc.), and (ii) a dynamical system
(e.g., a linear, nonlinear, discrete, or continuous dynamics).
The objective is to maximize over the set of initial conditions
that forever remain feasible under the dynamics. The focus of
this paper is on the case where the optimization problem is a
linear program and the dynamics are linear. We establish some
structural properties of the feasible set and prove that if the
linear system is asymptotically stable, then the RDO problem
can be solved in polynomial time. We also outline a semidefinite
programming based algorithm for providing upper bounds on
robust-to-dynamics linear programs.

Index Terms— Robust optimization, linear programming,
semidefinite programming, dynamical systems.

I. INTRODUCTION

The field of robust optimization (RO) deals with the
scenario where the constraint functions of an optimization
problem are not exactly known and a decision has to be made
which is feasible irrespective of what the true functions turn
out to be. Broadly speaking, a robust optimization problem
is a problem of the form

min
x
{f(x) : gi(x) ≤ 0 ∀gi ∈ Gi, i = 1, . . . ,m}, (1)

where Gi is a prescribed “uncertainty set” for the i-th con-
straint function. Over the last couple of decades, our under-
standing of computational tractability of robust optimization
problems has matured quite a bit. A rather complete catalog
is available which tells us for which types of optimization
problems and which types of uncertainty sets the robust
counterpart of the problem becomes tractable (as in solvable
in polynomial time) versus intractable (typically meaning
NP-hard). For example, if the original problem is a linear
program (LP), i.e., the functions f, gi are all linear, and
if the sets Gi in parameter space are polyhedral, then the
robust counterpart can be written as a polynomially-sized
LP. If the uncertainty sets are instead ellipsoidal, then the
robust counterpart can be written as a second order cone
program and solved to arbitrary accuracy in polynomial time.
On the other hand, if the original problem is for example a
convex quadratically constrained quadratic program and the
uncertainty sets are polyhedral, then the robust counterpart
is NP-hard. A full collection of characterizations of this type
is available in [1] and [2] and references therein.

Amir Ali Ahmadi is with the Department of Operations Re-
search and Financial Engineering at Princeton University. Email:
a a a@princeton.edu. He has been partially supported for this work by
the AFOSR Young Investigator Program Award. Oktay Günlük is with the
Mathematical Programming Group of the Mathematical Sciences division
of IBM Research. Email: gunluk@us.ibm.com.

Our goal in this paper is to initiate a similar algorithmic
study for a special type of robust optimization problems that
interact with dynamical systems. We call these problems
robust to dynamics optimization problems (RDO). An RDO
problem has a very clean an natural mathematical formula-
tion. It has two pieces of input:

1) an optimization problem:

min
x
{f(x) : x ∈ Ω} (2)

2) a dynamical system:

xk+1 = g(xk) (in discrete time)
or ẋ = g(x) (in continuous time).

(3)

Here, we have x ∈ Rn, Ω ⊆ Rn, f, g : Rn → R; xk
denotes the state at time step k, and ẋ is the derivative of x
with respect to time. RDO is then the following optimization
problem:

min
x0

{f(x0) : xk ∈ Ω, k = 0, 1, 2, . . .} (4)

in discrete time, or

min
x0

{f(x0) : x(t;x0) ∈ Ω,∀t ≥ 0} (5)

in continuous time. In the latter case, the notation x(t;x0)
denotes the solution of the differential equation ẋ = g(x)
at time t, starting at the initial condition x0 ∈ Rn. In
words, we are optimizing an objective function over the set
of initial conditions1 that never leave the set Ω under the
dynamics. Problems of this type can appear in any real-
life situation where our current decisions—which need to
optimize an objective function—initiate a trajectory of a
dynamical system that we desire to constrain in future time.
One such setting e.g. arises in the study of robust model
predictive control [3].

Various RDO problems can be defined depending on what
combination of the optimization problem in (2) and the
dynamics in (3) one chooses to consider:

Optimization Problem Dynamics
Linear Program Linear
Semidefinite Program Nonlinear
Geometric Program Uncertain
Integer Program Time-varying
Robust Linear Program Discrete/continuous/hybrid of both
...

...

1By picking f appropriately we can also penalize future values of the
state; e.g., f(x0) = f̂(x0) + f̂(g(x0)) in the discrete time case.

In this paper, we consider the case where the optimization
problem is a linear program and the dynamics is linear and
in discrete time. Already a host of interesting mathematical
questions arise in this setting, which is arguably the simplest
one possible. In [4], we extend these results to the case where
the dynamics is uncertain and time-varying (in a switched-
systems model), and to the case where some of the functions
in the optimization problem are convex quadratics.

II. ROBUST TO LINEAR DYNAMICS LINEAR
PROGRAMMING

The robust to linear dynamics linear programming prob-
lem (R-LD-LP) is the following optimization problem:

min
x0

{cTx0 : Axk ≤ b, k = 0, 1, 2, . . . ;xk+1 = Gxk}. (6)

The input to this problem is c ∈ Fn, A ∈ Fm×n, b ∈
Fm, G ∈ Fn×n, where we either have F = R (for generality
of presentation) or F = Q (when we would like to study the
complexity of the problem in the bit model of computation).
We assume throughout the paper that the polyhedron {Ax ≤
b} is bounded; i.e., it is a polytope. Problem (6) has a simple
geometric interpretation: we are interested in optimizing a
linear function not over the entire polyhedra {Ax ≤ b}, but
over a subset of it that does not leave the polytope under the
application of G, G2, G3, etc. So the feasible set of R-LD-LP
is the following set

S :=

∞⋂
k=0

{x| AGkx ≤ b}. (7)

Let us give an example and draw some pictures.
Example 2.1: Consider an instance of R-LD-LP with

A =


−1 0
0 −1
0 1
1 1

 , b =


1
1
1
3

 , c =

[
−1
0

]
, G =

[
0.6 −0.4
0.8 0.5

]
.

(8)
The caption of Figure 1 explains the analysis of this

instance. The feasible set of this R-LD-LP is plotted in
Figure 1 (g). The optimal value is achieved at its right most
corner and is equal to 1.1492.

Several natural questions arise:

1) Does convergence to the set S happen in a finite
number of steps?

2) Is the set S always polyhedral?
3) If (or when) it is polyhedral, how many facets do we

need to describe it?
4) Can problem (6) be solved in polynomial time?
5) It is clear that any LP resulting from some truncation of

(6) (fixing an upper bound on k) gives a lower bound
on R-LD-LP. But how can we compute upper bounds?

These questions motivate what we present in the sequel.

Fig. 1. Plots correspond to the instance of R-LD-LP given in (8): (a)
The polytope {Ax ≤ b}. (b) the polytope {AGx ≤ b}. (c) The polytope
{AG2x ≤ b}. (d) The polytope {AG3x ≤ b}. (e) Polytopes in (a)-(d)
plotted together. (f) The original polytope {Ax ≤ b} (largest and in red),
two cuts added by the polytope {AGx ≤ b} (black lines with negative
slope), a single cut added by {AG2x ≤ b} (black line with positive slope);
no cut is added in this case by {AG3x ≤ b}. (g)

⋂3
k=0{x| AGkx ≤ b};

this turns out to be equal to
⋂∞

k=0{x| AGkx ≤ b}, i.e., the feasible set of
our R-LD-LP.

A. Some structural results

Let us start with a simple lemma. A set C is said to be
invariant (with respect to a particular dynamical system), if
points starting in C remain in it forever.

Lemma 2.1: The set S defined in (7) is closed, convex,
and invariant.

Proof: Convexity is obvious, as S is given by (an
infinite) intersection of polyhedra. Invariance is also a trivial
implication of the definition: if x ∈ S, then Gx ∈ S. To
prove that S is closed, consider a sequence {xj} → x̂, with
each xj ∈ S. Suppose we had x̂ /∈ S. This means that
AGkx̂ > b for some k. But this implies that AGkx > b, for
all x sufficiently close to x̄, including some elements of the
sequence {xj}.

Our next lemma gives a way of detecting termination as
we add cuts and is also simple to prove.

Lemma 2.2: Suppose for some r we have

r⋂
k=0

{x| AGkx ≤ b} =

r+1⋂
k=0

{x| AGkx ≤ b}. (9)

Then,
∞⋂
k=0

{x| AGkx ≤ b} =

r⋂
k=0

{x| AGkx ≤ b}.

Proof: We observe that condition (9) implies that the
set Sr :=

⋂r
k=0{x| AGkx ≤ b} is invariant. If not, there

would exist an x ∈ Sr with Gx /∈ Sr. But this implies that
x /∈ Sr+1, which is a contradiction. Invariance of Sr implies
that Sr = S.

Lemma 2.3: Condition (9) can be checked in polynomial
time.

Proof: We clearly have Sr+1 ⊆ Sr. To check the
inclusion Sr ⊆ Sr+1, we can solve m LP feasibility
problems that try to find a point in Sr that violates one of

the m defining inequalities of Sr+1. The desired inclusion
is true if and only if all of these LPs are infeasible.

Now that we know finite termination can be efficiently
detected, a natural question is whether finite termination
always occurs. The answer is negative (and in more than
one way!).

Fig. 2. The counterexample in the proof of Theorem 2.4.

Theorem 2.4: Let Sr :=
⋂r
k=0{x| AGkx ≤ b}. Then the

convergence of Sr to S in (7) may not be finite.
Proof: Consider an instance of R-LD-LP with

G =

(
2 0
0 1

2

)
, and let the initial polytope {Ax ≤ b}

be the unit square on the plane. Then it is straightforward to
see that convergence is not finite; see Figure 2.

Even though in our previous example convergence did not
happen in a finite number of steps, the feasible set of R-LD-
LP still turned out to be polyhedral. Is this always the case?
The answer is negative.

Fig. 3. The counterexample in the proof of Theorem 2.5.

Theorem 2.5: The feasible set of R-LD-LP may not be
polyhedral.

Proof: Consider the following instance of R-LD-LP in
R2:

A =


1 0
−1 0

0 1
0 −1

 , b =


1
1
1
1

 and G =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
,

(10)
where θ/2π is irrational. In other words, letting B = [−1, 1]2

and using polar coordinates with the convention xk =
(rk, φk), the feasible region consists of points x0 = (r0, φ0)
such that (r0, φ0 + kθ) ∈ B for all non-negative integers k.

Notice that the closed disk D centered at the origin with
radius 1 is contained in B and consequently (r0, φ0 + kθ) ∈

B for all k provided that r0 ≤ 1. On the other hand, consider
a point x0 = (r0, φ0) such that r0 > 1, and let C be the circle
centered at the origin with radius r0. Clearly, all xk ∈ C.
Furthermore, note that for any fixed r0 > 1, there exists
2π > β1 > β2 ≥ 0 such that none of the points in C
between (r0, β1) and (r0, β2) belong to B. But, for large
enough k > 1, we have φ0 + kθ ∈ [β1, β2] as θ and 2π
are rationally independent (see [5, Chapter 3, Theorem 1]).
Consequently, x0 is feasible if and only if x0 ∈ D.

Figure 3 depicts an example of the phenomenon described
in this proof.

We remark that some entries in the matrix G presented in
the proof we just gave are irrational. It is an interesting open
problem to determine whether one can have an instance of
R-LD-LP, with rational A, b,G, where the final feasible set
is not polyhedral. We have been unable to construct such an
example.

Here is another question: Is the feasible set of R-LD-LP
polyhedral if the spectral radius ρ(G) of the matrix G is
less than one? The answer in this case is positive. In fact a
stronger result is proven in the next section.

III. A POLYNOMIAL-TIME ALGORITHM

In this section we present a polynomial-time algorithm
for R-LD-LP in (6) in the case where the dynamics is
asymptotically stable, i.e., ρ(G) < 1. Arguably, this is the
most interesting setting. Note that if ρ(G) > 1, then almost
all trajectories shoot out to infinity and hence under our
assumption that the polyhedron {Ax ≤ b} is bounded, the
feasible set of R-LD-LP will not be full dimensional. The
boundary case ρ(G) = 1 is more tricky. Here trajectories
can stay bounded or go to infinity depending on the geo-
metric/algebraic multiplicity of the eigenvalues with absolute
value one. Even in the bounded case, we have shown already
in Theorem 2.5 that the feasible set of R-LD-LP may not
be polyhedral. Hence the optimal value of R-LD-LP may
not even be a rational number (consider, e.g., Figure 3 with
c = (1, 1)T).

In the case where ρ(G) < 1, we must have the condition
that the origin is inside the polytope {Ax ≤ b} or else the
feasible set of R-LD-LP will be empty. We make the slightly
stronger assumption that the origin is strictly in the interior
of the polytope.

Theorem 3.1: R-LD-LP (see (6)) can be solved in poly-
nomial time when ρ(G) < 1 and the origin strictly in the
interior of {Ax ≤ b}.

Proof: We will show that there exists an integer r, with
size polynomial in the data (A, b, c,G), such that the feasible
set of R-LD-LP given in (7) in fact coincides with its finite
truncation of length r:

Sr =

r⋂
k=0

{x| AGkx ≤ b}.

Hence, we can instead minimize cTx over this polyhedron.
In view of the fact that this is a polynomially-sized LP, and
that LPs can be solved in polynomial time [6], the theorem
would be established.

Our algorithm for finding the integer r is broken down
into four simple steps:
• Find an ellipsoid {xTPx ≤ 1}, defined by a positive

definite matrix P , which is invariant under the dynamics
xk+1 = Gxk; i.e., P satisfies the linear matrix inequal-
ity GTPG � P.

• Find a scalar α2 > 0 such that

{Ax ≤ b} ⊆ {xTPx ≤ α2}.

• Find a scalar α1 > 0 such that

{xTPx ≤ α1} ⊆ {Ax ≤ b}.

• Find a “shrinkage factor” γ ∈ (0, 1), which gives
a lower bound on the amount our ellipsoid shrinks
in every iteration. This would be a scalar satisfying
GTPG � γP .

• Let

r = d
log α1

α2

log γ
e. (11)

The idea is that all the points inside the outer ellipsoid
{xTPx ≤ α2}, and in particular all the points in {Ax ≤ b},
are guaranteed to be within the inner ellipsoid {xTPx ≤ α1}
after at most r steps. Once they are in the inner ellipsoid,
they can never leave it because of the invariance condition.
Hence, if any point were to leave the polyhedron {Ax ≤ b},
it needs to do it before r steps.

What we need to do now is to show that P, γ, α1, α2 can
be computed in polynomial time.
• Computation of P . To find an invariant ellipsoid for
G, we solve the linear system

GTPG− P = −I, (12)

where I is the n × n identity matrix. This is the
well-known Lyapunov equation. Since ρ(G) < 1, this
equation is guaranteed to have a unique solution. Note
that since this is a linear system, the entries of the
solution P will be rational numbers of polynomial size.
Further, we claim that P will automatically turn out to
be positive definite (hence the sublevel sets {xTPx ≤
α} will be compact). To see this, suppose we had
yTPy ≤ 0, for some y ∈ Rn, y 6= 0. Multiplying
(12) from left and right by yT and y, we see that
yTGTPGy ≤ −yT y < 0. In fact, yT (Gk)TPGky ≤
−yT y < 0, for all k ≥ 1. But since ρ(G) < 1 implies
that the linear system is asymptotically stable, we must
have Gky → 0, and hence yT (Gk)TPGky → 0, a
contradiction.
In short, we can get a rational positive definite matrix
P of polynomial size just by solving the linear system
(12). This defines the shape of our invariant ellipsoid.

• Computation of γ. We claim that we can let our
shrinkage factor be equal to

γ = 1− 1

maxi{Pii +
∑
j 6=i |Pi,j |}

.

Note that Pii ≥ 1 because (12) and positive definiteness
of P imply that P−I � 0. Hence γ is indeed a number

in [0, 1). To prove that this choice of γ works, observe
that by (12) we have the following inequality for all x:

xTGTPGx = xTPx− xTx
≤ xTPx(1− η),

(13)

where η is any number such that

ηxTPx ≤ xTx,

(for all x). The largest such η is exactly 1
λmax(P) .

Since we do not want to deal with eigenvalues, we
simply observe that an upper bound on λmax(P), via
Gershgorin’s circle theorem, is

λmax(P) ≤ max
i
{Pii +

∑
j 6=i

|Pi,j |}.

• Computation of α2. By solving, e.g., n LPs, we can
place our polytope {Ax ≤ b} in a box; i.e., compute
2n scalars li, ui such that

{Ax ≤ b} ⊆ {li ≤ xi ≤ ui}.

We then bound xTPx =
∑
i,j Pi,jxixj term by term to

get α2:

α2 =
∑
i,j

max{Pi,juiuj , Pi,j lilj , Pi,juilj , Pi,j liuj}.

This ensures that {li ≤ xi ≤ ui} ⊆ {xTPx ≤ α2}.
Hence, {Ax ≤ b} ⊆ {xTPx ≤ α2}.

• Computation of α1. For i = 1, . . . ,m, we compute a
scalar ηi by solving the convex program

ηi := min
x
{aTi x : xTPx ≤ 1},

where ai is the i-th row of the constraint matrix A. This
problem has a closed form solution:

ηi = −
√
aTi P

−1ai.

Note that P−1 exists since P � 0. We then let

α1 = min
i
{ b

2
i

η2i
}.

This ensures that for each i, the minimum of aTi x over
{xTPx ≤ α1} is larger or equal to bi. Hence, {xTPx ≤
α1} ⊆ {Ax ≤ b}.
We finally observe that all computations described
above can be carried out in polynomial time.

IV. FINDING AN INVARIANT INNER ELLIPSOID BY
SEMIDEFINITE PROGRAMMING

In this section, we describe a semidefinite programming
(SDP) based algorithm to obtain upper bounds on the optimal
value of an R-LD-LP when ρ(G) < 1. Although we have
already presented a polynomial time algorithm for this task
in the previous section, an algorithm for finding upper bounds
is valuable in two regards.
• First, in a practical situation, we may not want to do all

the computation needed to find the integer r in (11) and

then solve an LP that adds cuts all the way to level r.
Instead, we may want to only go through the first few
levels of the LP and obtain a lower bound on the optimal
value of R-LD-LP. If we could also get our hands on
an upper bound from another algorithm, then we would
have an idea of how far we are from optimality. If we
are happy with the gap, we could just stop there.

• Second, when we extend our problem in [4] to the
case where the dynamics is still linear, but uncertain
and time-varying, then it is hopeless to look for an
exact polynomial time algorithm of the type presented
in Section III. Nevertheless, the SDP-based algorithm
outlined below goes through and allows us to obtain
upper bounds.

In addition to these reasons, the convexification tricks [4]
used to arrive at the SDP are in our opinion quite interesting
and could be of value elsewhere.

So what is our strategy for obtaining upper bounds on
R-LD-LP? We will look for an ellipsoid that has following
properties:

1) It is invariant under the dynamics xk+1 = Gxk.
2) It is contained in the polytope {Ax ≤ b}.
3) Among all ellipsoids that have the previous properties,

this is one that gives the minimum value of cTx0 as
x0 ranges over the ellipsoid.

Here is a mathematical description of this optimization
problem:

minx,P {cTx :
P � 0, GTPG � P, xTPx ≤ 1,
[∀z, zTPz ≤ 1 =⇒ Az ≤ b]}.

(14)

There are at least two issues with this formulation. First,
the constraint [∀z, zTPz ≤ 1 =⇒ Az ≤ b] needs to
be rewritten to remove the universal quantifier. Second, the
decision variables x and P are multiplying each other in
the constraint xTPx ≤ 1, which is a problem. Nevertheless,
one can get around these issues and formulate this problem
exactly as an SDP. The proof is presented in [4], but we give
the statement here in the case where the polytope {Ax ≤ b}
is origin symmetric2. The main ingredients of the proof are
the S-lemma [7], Schur complements, polar duality theory of
convex sets, and duality of linear dynamical systems under
transposition of the matrix G.

Theorem 4.1: In the case where the polytope {Ax ≤ b}
is origin symmetric, the optimization problem in (14) can be
rewritten as the following SDP:

minx,Q{cTx :

Q � 0, GQGT � Q,
(
Q x
xT 1

)
� 0, aTi Qai ≤ 1, i = 1, . . . ,m},

(15)
where ai is the transpose of the i-th row of A.

2Origin symmetry means that x is in the polytope if and only if −x is
in the polytope. This assumption can be removed at the expense of a more
elaborate SDP [4] .

Fig. 4. An inner ellipsoid found by semidefinite programming; the optimal
solution over the ellipsoid (*); the true optimal solution of R-LD-LP (o).

Example 4.1: Consider the following instance of R-LD-
LP in R2:

A =

 1 0
−1 0
0 1
0 −1

 , b =
111
1

 and G =
4

5

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
,

(16)
with θ = π

6 and c = (−1,−1)T .
Figure 4 depicts the true feasible set of R-LD-LP, the

invariant ellipsoid that approximates it from the inside, and
the optimal points achieved by minimizing cTx over the two
sets. The true optimal value of R-LD-LP is 1.6795 and the
upper bound we are getting from the SDP in (15) is 1.8660.

REFERENCES

[1] D. Bertsimas, D. B Brown, and C. Caramanis. Theory and applications
of robust optimization. SIAM review, 53(3):464–501, 2011.

[2] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization.
Princeton University Press, 2009.

[3] A. Bemporad and M. Morari. Robust model predictive control: A
survey. In Robustness in identification and control, pages 207–226.
Springer, 1999.

[4] A. A. Ahmadi and O. Günlük. An algorithmic study of robust-to-
dynamics optimization. In preparation, 2015.

[5] I.P. Cornfeld, S.V. Fomin, and Y.G. Sinai. Ergodic Theory. Grundlehren
der mathematischen Wissenschaften. Springer-Verlag New York, 1982.

[6] L. G Khachiyan. Polynomial algorithms in linear programming. USSR
Computational Mathematics and Mathematical Physics, 20(1):53–72,
1980.

[7] I. Pólik and T. Terlaky. A survey of the S-lemma. SIAM Review,
49(3):371–418, 2007.

