This lecture:

The goal of this lecture is to refresh your memory on some
topics in linear algebra and multivariable calculus that will be
relevant to this course. You can use this as a reference
throughout the semester.

The topics that we cover are the following:

w Inner products and norms
3 Formal definitions
3 Euclidian inner product and orthogonality
3 Vector norms
3 Matrix norms
3 CauchySchwarz inequality

w Eigenvalues and eigenvectors
3 Definitions
3 Positive definite and positive semidefinite matrices

w Elements of differential calculus
3 Continuity
3 Linear, affine and quadratic functions
3 Differentiability and useful rules to differentiation
3 Gradients and level sets
3 Hessians

w Taylor expansion

3 Little o and big O notation
3 Taylor expansion
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Inner products and norms

Definition of an inner product

An inner product is a reatvalued function thit Dsa a O q that satisfies the
following properties:

w Positivity:  afto mand o Triif x=0.
w Symmetry: oo oo 8
w Additivity: @« oty ot 8

~

w Homogeneity: i 0 1 o Jivas

Examples in small dimension
Here are some examples in andsa that you are already familiar with.
Example 1. Classical multiplication

g8 Da 50 9
ow © wtw

Check that this is indeed a inner product using the definition.

Example 2:

g8da A O=A -
WO o Q¢ "wtRQE "GotRT ©

w This geometric definition is equivalent to the
following algebraic one (why?):

Notice that the inner product is positive when—is
smaller than 90 degrees, negative when it is greater thal
90 degrees and zero wher—  Tdegrees.

Lec2 Page 2



Euclidean inner product

The two previous examples are particular case€( pandé ¢) of the Euclidean
inner product :

8.

~

oo Ww 0w LYQIWQ ho N g

8‘(D>“ 8

é
w

Check that this is an inner product using the definition.

Orthogonality
We say that two vectorswand ware orthogonal if &0 18

w Note that with this definition the zero vector is orthogonal to every other

vector.
w But two nonzero vectors can also be orthogonal.

3 For example,

N O
4
=q ©

a)
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Norms

A vector norm is a real valued functionet £D 51 © a that satisfies the
following properties:

w Positivity: £08 mand&£wE Tiif 0 T
w Homogeneity:£i & ds&wAforalli N a8

w Triangle inequality : £0 WA AWA AWAS

Basic examples of vector norms

Figure X2

Name 1-normor || - |4 2-normor || - ||, or Euclidean norm co-normor || - ||

Definition ”x”l = |X1| 1 Ixnl IIX”Z = 4Vy<x,x> = X;z + -4 x,zl ”x"w = n]l.axlxil

: llxlly = |2y + |x2 | 2 4 o2
On the figure _ +4 llxllz = [xi +x5 =

Ixlle = %, = ——

w Check that these are norms using the definition!

w When no index is specified on a norm (e.gH3s this is considered to be the
Euclidean norm.

w For the three norms above, we have the relatiorgus SO LB 8

w Given any inner product@du®one can construct a norm given by

LILKH L .
q&nb’ But not every norm comes from an inner product. (For example,
one can show that thessgs norm above doesn't.)

Cauchy Schwarz Inequality

For any two vectorswand win 1, we have the secalled CauchySchwarz
inequality:

s o s moEt mys

Furthermore, equality holds iifw | wfor some| N 98
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Matrix norms (We skipped this topic in lecture. We'll come back to it as we need to.
Similar to vector norms, one can define norms on matrices. These are functions

A A O g hthat satisfy exactly the same properties as in the definition of a vecto
norm (see page 36 of [CZ13]).

Induced norms

Consider any vector normas& gg © 4 . The induced normas& g O a onthe
space ofa & matrices is defined as:

e | A@ &g s Al Aw  p

Notice that the vector norm and the matrix norm have the same notation; it is for you
to know which one we are talking about depending on the context.

One can check that® & satisfies all properties of a norm.
Frobenius norm

The Frobenius normASE da O g is defined by:

ITHHHHHHHHE

AD A W

The Frobenius norm is an example of a matrix norm that is not induced by a vector
norm. Indeed,£#O0 &  pfor any induced normas& (why?) but 20 £ £8

Submultiplicative norms
A matrix norm is submultiplicative if it satisfies the following inequality:
A OE MALME

w All induced norms are submultiplicative.
w The Frobenius norm is submultiplicative.
w Not every matrix norm is submultiplicative: S8 © | A @305 s

Taked 0O g ggl_henﬁlf)/Ef/R"S/E ptp p8

Buto 6 E E 8Hencem 08 candmAt WA A OF
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Continuity

w We first give the definition for a univariate function and then see that it
generalizes in a straightforward fashion to multiple dimensions using the
concept of a vector norm.

Definitionin 4

A function"®@g © s is continuousat a point™ A if! | mhm] i &8
for all owith <0 ¢ 1 we haveSQw Qs 78

A function™@f © q is said to be continuous if it is g
continuous at every point over its domain.

3
A function that is not continuous

Definitionin a°
A function™®@a © a s continuous at®N g if:
L7 mim]  midBoNa hmy O 1+ AQw QA 78

Once again, ifQs continuous at all points in its domain,then "Qs said to be
continuous.

Remarks.

w If in the above definition we change the zhorm with any other vector
norm, the class of continuous functions would not change.
3 This is because of "equivalence of norms in finite dimensions”, a resu
we didn't prove.
"0
w Afunction™@g © a givenasQ € is continuous if and only if each
"0
entry "fg O g is continuous.
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Linear, Affine and Quadratic functions

Linear functions

A function0da © sa iscalled a linear if:

WO @@ | 0w! wv a and! | N g
WO0w w 0w 0w! dwNs

w Any linear function can be represented as
Dw 0d
where 0 isana € matrix.

w The special case wheré  p will be encountered a lot. In this case, linear
functions take the form0 w @ wfor some vector®oN s 8

0.10] P e

||_n=\§ / - /_:/

/.u_lné / _8l .

Lineara ¢ p Affnea € p

Lineart c¢ha p

Affine functions

A function™@n © g is affine if there exists a linear functionda © s and
avectoroN A  such that:

Mw (w w ! ova4

Whend  phaffine functions are functions of the form
Qw O w wwhere®N a hoN a8
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Quadratic functions

Aquadratic form™@ga © g is a function that can be represented as

~

MQw ®Lw
where Q is & ¢ matrix that we can assume to be symmetric without loss of

generality (i.,e.,0 0 8

Why can we assume this without loss of generality?

If 0 is not symmetric, then we candefin@ 1 0 0 whichis a symmetric matrix
(why?) and we would still have® 0 & @ 0 @ (why?).

What do these functions look like in small dimensions?

When¢ phwe have’ Qo o where dN a8

[

When¢ chd gv,and(bﬁ(b oo @

1%

o ¢ @E @38

e
S

A quadratic functionis a function that is the sum of a quadratic form and an
affine function: Qw WL ® O W GB

x1

Quadratic forme  p Quadratic function¢  p Quadratic form& ¢
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Eigenvalues and Eigenvectors
Definition
w Letd be ang¢ & squarematrix. A scalar_ and anonzero vector U satisfying
the equation0 U _ ULarerespectively saidto be an eigenvalueand an

eigenvectorof 0. In general, both_and 0 may be complex.

w For _to be aneigenvalueit is necessaryand sufficient for the matrix _ 'O 0 to
besingular,thatisA A O°06  m(‘Qhereisthet & identity matrix).

w We call the polynomialA A 0’06 _ & _ E ®_ & the
characteristic polynomial of 0.

w Thefundamental theorem of algebratells us that the characteristic polynomial
must have¢ roots. These roots are the eigenvalues 0f8

w Once an eigenvalue is computed, we can solve a linear system o0 _ Uo
obtain the eigenvectors.

w You should be comfortable with computing eigenvalues @f ¢ matrices.

Eigenvalues and eigenvectors of a symmetric matrix
0 is a symmetric matrix if 0 08
w All eigenvalues of a symmetric matrix are real.
Proof. Ax="xn O Aza+tb = a-ib
5 TAT-a% B AL 07 @
Q= WArz I

—_—

wJ
0 = 7.4\A}k:. A% #+=

} = Tz AN = O«ﬁ) R =0
= =7 O

w Any real symmetricé &€ matrix has a set o€ real eigenvectors that are
mutually orthogonal. (We did not prove this.)
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Positive definite and Positive semidefinite matrices

~ Notation
A symmetrice € matrix U is said to be
w Positive semidefinite (psd) if @ O @ TtiforalloN a9 8 Q Zo
w Positive definite (pd) if @ 0 @ tforalloNy 8 b 18 QLo
w Negative semidefinite if 0 is positive semidefinite. QLo
w Negative definite if 0 is positive definite. Q<o

w Indefinite if it is neither positive semidefinite nor negative
semidefinite.

Note: The [CZ13] book uses the notatiod  Ttinstead of0 6 T(and
similarly for the other notions). We reserve the notationd  ttfor matrices
whose entries are nonengative numbers. The notatiod 8 Ttis much more
common in the literature for positive semidefiniteness.

Link with the eigenvalues of the matrix

w A symmetric matrix U is postive semidefinite (resp. positive definite)
if and only if the eigenvalues ob are nonnegative (resp. positive).

w As a result, a symmetric matrixd is negative semidefinite (resp.

negative definite) if and only if the eigenvalues ab are nonpositive
(resp. negative).

Here is the easier direction of the proof (the other direction is also
straightforward; see [CZ13]):

Q. A= ef}eu values 3 o

IV\JeCJ if 1(0 ay\d Aﬂ://\')() fhey\ ’)LTAX::)_,}I,Z(} <o =) (—Q %;o.

<o 20
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Positive definite and positive semidefinite matrices (cont'd)
Sylvester's criterion

Sylvester's criterion provides another approach to testing positive definiteness or
positive semidefiniteness of a matrix.

w A symmetric matrix O is positive definiteif and only if
AARA® PAAD B A A©D arepositivewhere 3 s I8 s are submatrices
defined as in the drawing below. These determinants are called tieading
principal minorsof the matrix 0.

w There are alway<t leading principal minors.

A911] 12| 913 ° 1in
G21 q22| 423
Q=931 432 Q33

\qnl Onn

w A symmetric matrix O is positive semidefinitéf and only if
ARDMADBM AD  arenonnegativewheres 8 s are
submatrices obtained by choosing a subset of the rows and the same
subset of the columns from the matrix) . The scalars
AROMADMBMALD  are called theprincipal minorsof 0.

L
(V] b QAo Q}lo' C?lo
Q,—Ib C} ) [@7°<:7 Q;_LI7°} ] [sz’@ GC_L”‘)/Q}
det@
Q=|a b ¢ ) 01‘7..@ oY , O.}/o = aye, d7e, 30
10 J e ad/‘oz7o N
¢ e f det Q> ad -b z0, af-(70, df-e70

dr€+ (9\/ 7/0
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Gradients, Jacobians, and Hessians

Partial derivatives

Recall that the partial derivative of a functiori®@s © A with respect to a
variable w is given by
T Q. )Qu | Q "Qow.
inp. | Etknunnunnunnnnnih

w o

where ‘Q is the "@h standard basis vector ina I.e., the’@h column of theg¢ ¢
identity matrix.

The Jacobian matrix

Forafunction@g © a givenas™Qm QB RQ @ , theJabocian
matrix is thea &€ matrix of first partial derivatives:

T Qw T Qw

IHHHHH. E IHHHH KT
0V

v 1@ e
LW & € G (The notation of the CZ book i© ®)
TQw . 1TAQwW
> IHHHHHH E ITHHHHHH
o Tw Tw

Thefirst order approximationof "Onear a pointw is obtained using the Jacobian
matirx:0 @ Qw UL ® w o 8Note that this is an affine function ofa

The gradient vector

The gradient of a reatvalued function™®@g © s is denoted byn"Qw and is
given by

QW &

This is a very important vector in optimization.
As we will see later, at every point, the gradient
vector points in a direction where the function
grows most rapidly.

Xy

Image credit: [CZ13]
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Level sets

For a scalar N @, the| -level sebof a function™@g © a is defined as
Y  ova sQwu | h

and the| -sublevel sebf Qs given by

Y wova sSQw | 8

Fact: At any pointw N s hthe gradient vectorn™Qa is orthogonal to the
tangent to the level set going throughw 8See page 70 of [CZ14] for a proof.

A
AN
.
~

Level sets and gradient vectors of a function. Zooming in on the same picture to see orthogonality.
The Hessian matrix

For a function™®@n © g that is twice differentiable, the Hessian matrix is th& ¢
matrix of second derivatives:

"Qd) 4 T "Q(b

IHH NN E flllll*lllll\
e ol wg
n"Qw & é € 538

I "Q & T "Q

> ITHHHHHH IHHP
0T w! W Tw O

Remarks:

w If "Qs twice continuously differentiable, the Hessian matrix is always a symmetric
matrix. This is because partial derivatives commute:

ITHHHH ITHHHH,

w The [CZ13] book uses the notatioi® "Qfor the Hessian matrix.
w Second derivatives carry information about the "curvature" of the functioric®
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Practical rules for differentiation

The sum rule

f"® ©a9 and™@ © 9 thent @ O ®w UL W3
The product rule

Let™@a © a and™@p © a be two differentiable functions. Define the
function@@ © g by Qw "Qw "Qw . ThenQs also differentiable and

LW QW L ®w Qw L ®
and
nNQw L @ 8
The chain rule
Let‘“ngl ©a and"@s © s.We suppose that g is differentiable on an open set
O0O0s4 and simarlarly we suppose that®@, ciw © Ois diffentiable on (a,b). Then
the composite function@, ctw © s givenby™ Qo  "Q"Q0 s differentiable on
(a,b) and:

Qo
o o € 8

Qo
A special case that comes up a lot
Let wand wbe two fixed vectors ing  and let"@g © q 8efine a univarite
function™ Q0 "Qw 0 8
ThenQ 0 wWNQw 0 638

Gradients and Hessians of affine and quadratic functions

Wi Qo oo Qthent™Qo  ®andn Qo T

wlf Qe &0 cand0 is symmetric, thenn™Qow ¢ 0 endn Qo ¢ 0
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Taylor expansion

Little o and Big O notation
These notions are used to compare the growth rate of two functions near the origin.

Definition
Let"(@fs © s be a function that does not vanish in a neighborhood around the origir

except possibly at the origin . Lei®@s © a be defined in a domaimmO s that
includes the origin. Then we write:

WwQw U "Qw (pronounced "Qs big Oh of (7)) to mean that the quotient
A£Qw ATSQw sis bounded near 0; that is there exist®  1and] Ttsuch that if

AYE | hooN n]thenf;tiuuu;l'E 08

W Qw € "Qw (pronounced Qs little oh of "QY) if

., QA
| E liypnpnr 118
O hN SQ(*)S

Intuitively, this means that"'Qgoes to zero faster than(®
Examples
Qw U Qw
ww 0 o‘oaszuz p! wN A
ww U 1o (cantaked ph 18
wAT ® 0 p (why?)

Www 0w (why?)

wOEdD 0 & (why?)
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