
This lecture:

The goal of this lecture is to refresh your memory on some 
topics in linear algebra and multivariable calculus that will be 
relevant to this course. You can use this as a reference 
throughout the semester. 

The topics that we cover are the following:

Formal definitionsƺ

Euclidian inner product and orthogonalityƺ

Vector normsƺ

Matrix normsƺ

Cauchy-Schwarz inequalityƺ

Inner products and normsω

Definitionsƺ

Positive definite and positive semidefinite matricesƺ

Eigenvalues and eigenvectorsω

Continuityƺ

Linear, affine and quadratic functionsƺ

Differentiability and useful rules to differentiation ƺ

Gradients and level setsƺ

Hessians ƺ

Elements of differential calculusω

Little o and big O notationƺ

Taylor expansionƺ

Taylor expansionω

Instructor: 
Amir Ali Ahmadi

Fall 2014

TAs:  Y. Chen,
           G. Hall,
            J. Ye
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Inner products and norms

Definition of an inner product

Positivity: ὼȟὼ  πand ὼȟὼ  πiif x=0.ω

Symmetry: ὼȟώ  ώȟὼ Ȣω

Additivity: ὼ ώȟᾀ   ὼȟᾀ   ώȟᾀ Ȣω

Homogeneity : ὶὼȟώ  ὶ ὼȟώ  ᶅὶɴ ᴙȢω

An inner product is a real-valued function ẗ ȟẗḊᴙ  ᴙ ᴼᴙthat satisfies the 
following properties:

Examples in small dimension

Here are some examples in ᴙand ᴙ that you are already familiar with.

Example 1: Classical multiplication

     ὼȟώᴼὼẗώ 
ȢȟȢ Ḋ ᴙ ᴙᴼᴙ

Check that this is indeed a inner product using the definition.

Example 2:         

ȢȟȢȡ ᴙ ᴙ ᴼᴙ
ộὼȟώỚ ὰὩὲὫὸὬὼẗὰὩὲὫὸὬώẗÃÏÓ—

This geometric definition is equivalent to the 
following algebraic one (why?):
ộὼȟώỚ ὼώ ὼώȢ

ω

Notice that the inner product is positive when —is 
smaller than 90 degrees, negative when it is greater than 
90 degrees and zero when — ωπdegrees.
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Euclidean inner product

The two previous examples are particular cases (ὲ ρand ὲ ς) of the Euclidean 
inner product :

ὼȟώ  ὼώ ὼώ     ύὬὩὶὩ  ὼ

ὼ
ể
ὼ
ȟώ

ώ
ể
ώ
ᶰᴙ

Check that this is an inner product using the definition.

Orthogonality

We say that two vectors ὼand ώare orthogonal if ộὼȟώỚ πȢ

Note that with this definition the zero vector is orthogonal to every other 
vector.

ω

For example, ƺ

But two nonzero vectors can also be orthogonal.ω

ὼ
ρ

ς
ȟώ

σ
σ
ςựự
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Norms

Positivity: ᴁ ὼᴁ πand ᴁ ὼᴁ π iif ὼ π.ω

Homogeneity: ᴁ ὶὼ ᴁ ȿὶȿ ᴁ ὼ ᴁfor all ὶɴ ᴙȢω

Triangle inequality : ᴁ ὼ ώ ᴁ ᴁ ὼ ᴁ ᴁ ώ ᴁȢω

A vector norm is a real valued function ᴁ ẗ ᴁḊ  ᴙ ᴼᴙthat satisfies the 
following properties:

Basic examples of vector norms

Check that these are norms using the definition!ω

When no index is specified on a norm (e.g., ȿȿȢȿȿthis is considered to be the 
Euclidean norm.

ω

For the three norms above, we have the relation ȿὼȿ ȿὼȿ ȿὼȿ Ȣω

Given any inner product ộὼȟώỚȟone can construct a norm given by ȿὼȿ

ộὼȟὼỚ
ựựựựự . But not every norm comes from an inner product. (For example, 

one can show that the ȿȿȢȿ ȿnorm above doesn't.)

ω

Cauchy Schwarz Inequality

For any two vectors ὼand ώin ᴙ , we have the so-called Cauchy-Schwarz 
inequality:

ȿ ὼȟώ ȿ ᴁὼᴁẗᴁώᴁȢ

Furthermore, equality holds iif ὼ  ώ for some ᶰᴙȢ
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Matrix norms (We skipped this topic in lecture. We'll come back to it as we need to.)

Similar to vector norms, one can define norms on matrices. These are functions 
ᴁȢᴁȡ ᴙ ᴼ ᴙȟ that satisfy exactly the same properties as in the definition of a vector 
norm (see page 36 of [CZ13]).

Induced norms

Consider any vector norm ᴁȢᴁz
 
ȡᴙ ᴼᴙ. The induced norm ᴁȢᴁz

 
ȡᴙ ᴼᴙon the 

space of ά ὲmatrices is defined as:

ᴁὃᴁz
 
ÍÁØᴁὃὼᴁz

 
ȡὼɴ ᴙ ÁÎÄ ᴁὼᴁz

 
ρ 

Notice that the vector norm and the matrix norm have the same notation; it is for you 
to know which one we are talking about depending on the context.

One can check that ᴁὃᴁz
 
satisfies all properties of a norm.

Frobenius norm

The Frobenius norm ᴁȢᴁȡᴙ ᴼᴙ is defined by:

ᴁὃᴁ ὥ

ựựựựựựựựựự
 

The Frobenius norm is an example of a matrix norm that is not induced by a vector 
norm. Indeed, ᴁὍ ᴁz ρfor any induced norm ᴁȢᴁz

 
(why?) but ᴁὍ ᴁ ὲȢ

Submultiplicative norms

A matrix norm is submultiplicative if it satisfies the following inequality:

ᴁὃ ὄᴁ  ᴁὃᴁẗᴁὄᴁ

All induced norms are submultiplicative.ω
The Frobenius norm is submultiplicative.ω
Not every matrix norm is submultiplicative: ȿȿȢȿȿȡὃᴼÍÁØȟȿὥȟȿω

Take ὃ ὄ
ρ ρ
ρ ρ

Ȣ Then ᴁὃᴁẗ ᴁὄᴁ ρẗρ ρȢ 

But ὃὄ
ς ς
ς ς

ȢHence ᴁὃὄᴁ ς and ᴁὃᴁẗ ᴁὄᴁ ᴁὃὄᴁ
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Continuity

Definition in ᴙ▪

A function Ὢȡᴙ ᴼ ᴙ is continuous at ὥᶰᴙ if :

 ᶅ πȟɱ  π ίȢὸȢ ὼɴ ᴙȟᴁὼ ὥᴁ ᵼ ᴁὪὼ Ὢὥᴁ Ȣ

Once again, if Ὢis continuous at all points in its domain, then Ὢ is said to be 
continuous.

Definition in ᴙ

A function Ὢȡᴙᴼᴙ is continuousat a point ὥᶰᴙif  ᶅ πȟɱ   π ίȢὸȢ 
for all ὼwith ȿὼ ὥȿ we have ȿὪὼ   Ὢὥȿ Ȣ

We first give the definition for a univariate function and then see that it 
generalizes in a straightforward fashion to multiple dimensions using the 
concept of a vector norm.

ω

A function Ὢȡᴙᴼᴙ is said to be continuous if it is 
continuous at every point over its domain.

This is because of "equivalence of norms in finite dimensions", a result 
we didn't prove. 

ƺ

If in the above definition we change the 2-norm with any other vector 
norm, the class of continuous functions would not change. 

ω

A function Ὢȡᴙ ᴼ ᴙ given as Ὢ
Ὢ
ể
Ὢ

is continuous if and only if each 

entry Ὢȡᴙ ᴼᴙ is continuous.

ω

Remarks.

A function that is not continuous

Lec2p6, ORF363/COS323

   Lec2 Page 6    



Linear, Affine and Quadratic functions

Linear functions

ὒ ὼ  ὒὼ  ᶅ ὼɴ  ᴙ and ᶅ  ᶰᴙω
ὒὼ ώ ὒὼ ὒώ ᶅ ὼȟώᶰᴙω

A function ὒȡ ᴙ ᴼ ᴙ is called a linear if:

Any linear function can be represented as ω
                               ὒὼ ὃὼȟ
      where  ὃis an ά ὲmatrix.

The special case where ά ρwill be encountered a lot. In this case, linear 
functions take the form ὒὼ ὥὼfor some vector ὥᶰᴙȢ 

ω

Affine functions

A function Ὢȡᴙ ᴼᴙ is affine if there exists a linear function  ὒȡ ᴙ ᴼ ᴙ  and 
a vector ώ  ɴᴙ  such that:

Ὢὼ ὒὼ ώ       ᶅ ὼɴ  ᴙ

When ά ρȟaffine functions are functions of the form
Ὢὼ ὥὼ ὦ where ὥᶰᴙȟὦɴ ᴙȢ

Linear ά ὲ ρ Affine ά ὲ ρ

Linear ὲ ςȟά ρ 
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Quadratic functions

A quadratic formὪȡᴙ ᴼᴙis a function that can be represented as

Ὢὼ ὼ ὗ ὼ

where Q is a ὲ ὲ matrix that we can assume to be symmetric without loss of 
generality (i.e., ὗ ὗ Ȣ

Why can we assume this without loss of generality?

If ὗis not symmetric, then we can define ὗ ựὗ ὗ which is a symmetric matrix 

(why?) and we would still haveὼὗὼ ὼὗὼ(why?).

What do these functions look like in small dimensions?

When ὲ ρȟwe have Ὢὼ ὥ ὼ where ὥᶰᴙȢ

When ὲ ςȟὗ
ὥ ὦ
ὦ ὧ

, and  ὼὗὼ  ὼ  ὼ  
ὥ ὦ
ὦ ὧ

ὥὼ ςὦ ὼὼ ὧὼȢ

A quadratic function is a function that is the sum of a quadratic form and an 
affine function: Ὢὼ ὼὗὼ ὥὼ ὦȢ

Quadratic form ὲ ρ Quadratic form ὲ ςQuadratic function ὲ ρ
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Eigenvalues and Eigenvectors

Definition

Let ὃbe an ὲ ὲsquarematrix . A  scalar‗and a nonzero vectorὺsatisfying
the equationὃὺ ‗ὺ  are respectively said to bean eigenvalueand an 
eigenvectorofὃ. In general,  both ‗and ὺmay be complex.

ω

For ‗to be an eigenvalueit is necessaryand sufficient for the matrix ‗Ὅ ὃ to
besingular, that isÄÅÔ‗Ὅὃ π (Ὅhere is theὲ ὲidentity matrix) .

ω

We call the polynomial ÄÅÔ‗Ὅὃ ‗ ὥ  ‗ Ễ ὥ‗ ὥ the
characteristic polynomial ofὃ. 

ω

Thefundamental theorem of algebratells us that the characteristic polynomial 
must have ὲ roots. These roots are the eigenvalues of ὃȢ

ω

Once an eigenvalue ‗is computed, we can solve a linear system to ὃὺ ‗ὺto 
obtain the eigenvectors.

ω

You should be comfortable with computing eigenvalues of ς ςmatrices.ω

Eigenvalues and eigenvectors of a symmetric matrix

ὓ is a symmetric matrix if ὓ ὓȢ

All eigenvalues of a symmetric matrix are real. ω

Any real symmetric ὲ ὲmatrix has a set of ὲreal eigenvectors that are 
mutually orthogonal. (We did not prove this.)

ω

Proof.
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Positive definite and Positive semidefinite matrices

A symmetric ὲ ὲ matrix ὗis said to be

Positive semidefinite (psd) if  ὼὗὼ πfor all ὼɴ ᴙ Ȣ ω

Positive definite (pd) if  ὼὗὼ πfor all ὼɴ ᴙ ȟὼ πȢ ω

Negative semidefinite if ὗis positive semidefinite.ω

Negative definite if ὗis positive definite.ω

Indefinite if it is neither positive semidefinite nor negative 
semidefinite.

ω

Notation

Note: The [CZ13] book uses the notation ὗ πinstead of ὗṍπ (and 
similarly for the other notions). We reserve the notation ὗ πfor matrices 
whose entries are nonengative numbers. The notation ὗṍπis much more 
common in the literature for positive semidefiniteness.

Link with the eigenvalues of the matrix

A symmetric matrix ὗis postive semidefinite (resp. positive definite) 
if and only if the eigenvalues of ὗare nonnegative (resp. positive).

ω

As a result, a symmetric matrix ὗis negative semidefinite (resp. 
negative definite) if and only if the eigenvalues of ὗare nonpositive 
(resp. negative).

ω

Here is the easier direction of the proof (the other direction is also 
straightforward; see [CZ13]):
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Positive definite and positive semidefinite matrices (cont'd)

Sylvester's criterion

Sylvester's criterion provides another approach to testing positive definiteness or 
positive semidefiniteness of a matrix.

A symmetric matrix ὗ is positive definiteif and only if 
ÄÅÔ ɝ ȟÄÅÔ ɝ ȟȣȟÄÅÔ ɝ  are positive,where ɝȟɝȟȣȟɝ are submatrices 
defined as in the drawing below. These determinants are called the leading 
principal minorsof the matrix ὗ.

ω

There are always ὲleading principal minors.ω

A symmetric matrix ὗ is positive semidefiniteif and only if 
ÄÅÔ ɜȟÄÅÔ ɜȟȣȟÄÅÔ ɜ  are nonnegative,where ɜȟȣȟɜ  are 
submatrices obtained by choosing a subset of the rows and the same 
subset of the columns from the matrix ὗ. The scalars 
ÄÅÔ ɜȟÄÅÔ ɜȟȣȟÄÅÔ ɜ are called the principal minorsof ὗ.

ω
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Gradients, Jacobians, and Hessians

Partial derivatives

Recall that the partial derivative of a function Ὢȡᴙ ᴼ ᴙ with respect to a 
variable ὼ is given by
Ὢ

ὼ
ựựự ÌÉÍ

ᴼ

Ὢὼ Ὡ Ὢὼ


ựựựựựựựựựựựựựựựựȟ

where Ὡis the Ὥ-th standard basis vector in ᴙȠi.e., the Ὥ-th column of the ὲ ὲ
identity matrix.

The Jacobian matrix

For a function Ὢȡᴙ ᴼ ᴙ given as  Ὢὼ ὪὼȟȣȟὪ ὼ ,  the Jabocian 

matrix is the ά ὲmatrix of first partial derivatives:
                                                                                                                             

ὐὼ 

ở

Ở
ờ

Ὢὼ 
ὼ
ựựựựựự

ể

  Ễ
Ὢὼ  
ὼ
ựựựựựựự

ể
Ὢ ὼ 
ὼ
ựựựựựựự Ễ

Ὢ ὼ 
ὼ
ựựựựựựự

Ợ

ỡ
Ỡ

The first order approximationof Ὢ near a point ὼ is obtained using the Jacobian 
matirx: ὃὼ Ὢὼ ὐὼ ὼ ὼ Ȣ Note that this is an affine function of ὼ.

The gradient vector

Thegradient of a real-valued function Ὢȡᴙ ᴼᴙis denoted by ɳ Ὢὼ and is 
given by

Ὢɳὼ

ở

Ở
ờ

Ὢ
ὼ
ựựựὼ

ể
Ὢ
ὼ
ựựựὼ

Ợ

ỡ
Ỡ

ὐὼ╣Ȣ

This is a very important vector in optimization.
As we will see later, at every point, the gradient
vector points in a direction where the function
grows most rapidly.

(The notation of the CZ book is Ὀ ὼ)

Image credit: [CZ13]
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Level sets

For a scalar ᶰᴙ, the -level setof a function Ὢȡᴙ ᴼᴙis defined as 
Ὓ ὼɴ ᴙȿ Ὢὼ ȟ 
and the -sublevel set of Ὢis given by
Ὓ ὼɴ ᴙȿ Ὢὼ Ȣ

Fact: At any point ὼᶰᴙȟthe gradient vector ɳ Ὢὼ is orthogonal to the 
tangent to the level set going through ὼȢ See page 70 of [CZ14] for a proof.

Level sets and gradient vectors of a function. Zooming in on the same picture to see orthogonality.

The Hessian matrix

For a function Ὢȡᴙ ᴼᴙthat is twice differentiable, the Hessian matrix is the ὲ ὲ
matrix of second derivatives:

 ɳὪὼ

ở

Ở
ờ

Ὢὼ

ὼ
ể

ựựựựựự   Ễ
Ὢὼ

ὼ ὼ
ể

ựựựựựựự

Ὢ

ὼ ὼ
ựựựựựựự   Ễ

Ὢ

ὼ
ựựự

Ợ

ỡ
Ỡ
Ȣ

If Ὢis twice continuously differentiable, the Hessian matrix is always a symmetric 
matrix. This is because partial derivatives commute:

 ựựựựự  ựựựựự.

ω

The [CZ13] book uses the notation ὈὪ for the Hessian matrix.ω
Second derivatives carry information about the "curvature" of the function ὪȢω

Remarks:
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Practical rules for differentiation

The sum rule

If Ὢȡᴙ ᴼᴙ and Ὣȡᴙ ᴼ ᴙ  then ὐ ὼ ὐὼ ὐὼȢ

The product rule

Let Ὢȡᴙ ᴼᴙ  and Ὣȡᴙ ᴼ ᴙ  be two differentiable functions. Define the 
function Ὤȡᴙ ᴼᴙby Ὤὼ Ὢὼ Ὣὼ . Then Ὤis also differentiable and

ὐὼ Ὢὼ ὐὼ Ὣὼ ὐὼ

and
Ὤɳὼ ὐὼ Ȣ

The chain rule

LetὪȡᴙᴼᴙ and Ὣȡᴙ ᴼ ᴙ. We suppose that g is differentiable on an open set 
ὈṒᴙ and simarlarly we suppose that ὪȡὥȟὦᴼὈis diffentiable on (a,b). Then 
the composite functionὬȡὥȟὦᴼ ᴙgiven by Ὤὸ ὫὪὸ is differentiable on 
(a,b) and: 

Ὤὸ ὫὪὸ

Ὢ ὸ
ể
Ὢ ὸ

Ȣ

A special case that comes up a lot

Let ὼand ώbe two fixed vectors in ᴙ and let Ὣȡᴙ ᴼ ᴙȢDefine a univarite 
function Ὤὸ Ὣὼ ὸώȢ 
Then Ὤὸ ώ Ὣɳὼ ὸώȢ

Gradients and Hessians of affine and quadratic functions

If Ὢὼ ὧὼ ὦ, then ɳ Ὢὼ ὧand ɳ Ὢὼ π .ω

If Ὢὼ ὼὗὼ and ὗis symmetric, then ɳ Ὢὼ ςὗὼand ɳ Ὢὼ ςὗ.ω
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Taylor expansion

Little o and Big O notation 

These notions are used to compare the growth rate of two functions near the origin.

Definition

Let Ὣȡᴙ ᴼᴙ be a function that does not vanish in a neighborhood around the origin, 
except possibly at the origin . Let Ὢȡᴙ ᴼᴙ  be defined in a domain ɱṒ ᴙ that 
includes the origin. Then we write:

Ὢὼ ὕὫὼ (pronounced "Ὢis big Oh of Ὣ") to mean that the quotient 
ᴁὪὼᴁȾȿὫὼȿis bounded near 0; that is there exists ὑ π and  πsuch that if 

ᴁὼᴁ ȟὼɴ ɱ then 
ᴁ ᴁ

ȿ ȿ
ựựựựự ὑȢ

ω

Ὢὼ έὫὼ (pronounced "Ὢis little oh of Ὣ") ifω

ÌÉÍ
ᴼ ȟ ɴ

ᴁὪὼᴁ

ȿὫὼȿ
ựựựựựự πȢ

Intuitively, this means that Ὢgoes to zero faster than ὫȢ

Examples

Ὢὼ ὕὫὼ

ὼ ὕὼ as 
ȿȿ

ȿȿ
ựự ρ ᶅ ὼɴ ᴙω

ὼ ὕ ựὼ (can take ὑ ρȟ ựȢω

ÃÏÓὼ ὕρ (why?)ω

ὼ ὕὼ  (why?)ω

ÓÉÎὼ ὕὼ (why?)ω
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