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Real-world Optimization
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IBM Research

IBM: 377,757 employees (end of 2015)
IBM Research: 12 labs, 3000+ researchers
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IBM's Math. Sciences Dept.

IBM Mathematical Sciences Department:
� 50+ years old
� 50+ people
� 50 % funding from contracts, 50% from IBM grants

- 40% of time spent on applied work � need to publish 2-3 papers (or perish)
- 100% of time spent on applied work � need to publish 0 papers
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Discrete Optimization

Discrete optimization is the study of problems where the goal is to select a
minimum cost alternative from a �nite (or countable) set of alternatives.
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Application areas

Airlines route planning, crew scheduling American, United

revenue management Air New Zealand, British Airways

Package Delivery vehicle routing UPS, Fedex, USPS

Trucking route planning, vehicle routing Schnieder

Transportation network optimization Amazon

Telecommunication network design AT&T

Shipping route planning Maersk

Pipelines batch scheduling, network 
ows CLC, CNPC

Steel Industry cutting stock Posco

Paper Industry cutting stock GSE mbH

Finance portfolio management Axioma

Oil & Gas pooling ExxonMobil

Petrochemicals SK Innovation

Power generation unit commitment, resource management BC Hydro

Railways Timetabling, crew-scheduling BNSF, CSX, Belgian Railways,

Deutsche Bahn, Trenitalia
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Recent jobs in optimization

2016

Amazon - Operations Research Scientist

Network optimization, Linear and Integer programming - AMPL, Mosel, R, Matlab (Ph.D.)

Amazon - Applied Scientist- Operations Research, Devices

Linear Programming, Combinatorial optimization, Integer programming - CPLEX, Gurobi,

XPRESS (M.S.)

BAE Systems - Research Engineer Planning and Control

Vehicle Routing, Network Optimization - Mathematical Programming, Control Theory

(B.S./M.S./Ph.D.)

BNSF -OR & Advanced Analytics Specialist I

Railroad logistics - CPLEX, Gurobi, ProModel, ARENA, Frontline Solver (M.S./Ph.D.)

Facebook -Operations Research Scientist

Supply chain optimization, Inventory planning - Mathematical Programming (M.S./Ph.D.)
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FedEx - Operations Research Analyst

Schedule optimization, network planning, truck routing, crew planning, facility location (M.S.)

GE - Operations Research Specialist

Optimize railroad operations - CPLEX or Gurobi (M.S./Ph.D.)

LG Electronics USA - Applied Operations Research Lead

Demand/Inventory planning, Logistics optimization - AMPL, CPLEX (B.S.)

Modular mining - Operations Researcher

\Optimization of operational aspects of mining" - CPLEX, Gurobi, GAMS, AMPL

(M.S./Ph.D.)

Walt Disney World Resort - Decision Science Consultant

Mixed-integer, non-linear, stochastic optimization or Simulation (M.S./Ph.D.)

Uber - Operations Research Scientist

Optimize matching of riders to drivers, schedule optimization (Ph.D.)

IBM, SAS, Gurobi, Mosek, ORTEC
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Problems
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Knapsack Problem

Maximize the value of items packed in a knapsack while not exceeding its
capacity

10



Knapsack Problem

unbounded knapsack

ItemsKnapsack

....

0−1 knapsack solutions

....
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Cutting stock

Pack items into as few identical knapsacks as possible:
Used in steel, paper industry)

Solution:

2 x 3 x

....
Stock:

2 x

Orders:
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Traveling Salesman Problem

TSP: Minimize distance traveled while visiting a collection of cities and
returning to the starting point.

33-city TSP instance from a 1962 Procter and Gamble competition ($10,000
prize won by Gerald Thompson of CMU)
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10-city instance

0 - Chicago
1 - Erie

2 - Chattanooga

3 - Kansas City

4 - Lincoln

5 - Wichita

6 - Amarillo

9 - Reno

8 - Boise

7 - Butte

(n � 1)! = 362; 880 possible tours
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10-city instance

0 1 2 3 4 5 6 7 8 9

0 Chicago 0
1 Erie 449 0
2 Chattanooga 618 787 0
3 Kansas City 504 937 722 0
4 Lincoln 529 1004 950 219 0
5 Wichita 805 1132 842 195 256 0
6 Amarillo 1181 1441 1080 563 624 368 0
7 Butte 1538 2045 2078 1378 1229 1382 1319 0
8 Boise 1716 2165 2217 1422 1244 1375 1262 483 0
9 Reno 2065 2514 2355 1673 1570 1507 1320 842 432 0
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10-city instance: solutions

Tours of length 6633 and 6514 miles

0 1

2

3

4

5

6

9

8
7

0 1

2

3

4

5

6

9

8
7

Shortest tour: 0, 1, 2, 3, 5, 6, 9, 8, 7, 4
Shortest tour length: 6514
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Vehicle Routing

[10,90]

Minimize distance traveled by trucks at a depot delivering to a set of customers
within prescribed time windows (used in package delivery by Fedex, USPS etc.)

2014 survey in OR-MS Magazine lists 15+ vendors of VRP software.
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Min-max vehicle routing

120 

1

4
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1996 Whizzkids challenge

. 5000 Dutch Guilders prize sponsored by CMG

. Winners: Hemel, van Erk, Jenniskens (U. Eindhoven students)

. Max path length of 1183

. Local search techniques, 15,000 hours of computing time.

Optimal solution? Lower bound of 1160 given by Hurkens '97.
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Integer programming

min 5x + 8y subject to

:9x + y � 1:5; x + 3:1y � 2:4

0 � x � 3:5; 0 � y � 3:3; x; y integral

 y = 3.3

 c=(−5,−8)
 5x + 8y = 8

 5x + 8y = 21

 5x + 8y = 34

 5x + 8y = 47

 .9x + y = 1.5

 x + 3.1y = 2.4

 x = 3.5
 c
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Integer Quadratic programming

min 2x2 + 5y 2 + 6xy + 3x subject to

:9x + y � 1:5; x + 3:1y � 2:4

0 � x � 3:5; 0 � y � 3:3; x; y integral

 .9x + y = 1.5

 x + 3.1y = 2.4

 x = 3.5

 y = 3.3
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Computational Complexity
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NP-completeness

The problem of determining if there exists a TSP tour of length less than k is
NP-complete.
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Running time growth

. Traveling salesman problem: O(n22n) algorithm by Held and Karp

. Shortest path problem: O(n2) algorithm by Djikstra

function 5 10 30 64

n2 25 100 900 4096
n2 log n 58:0 332:2 4; 416:2 24; 576
2n 32 1024 1; 073; 741; 824 18; 446; 744; 073; 709; 551; 616
1:1n 1:6 2:6 17:4 445:8

Important: For real-life applications, the data/problem size are restricted.
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Time taken by Pisinger's MINKNAP algorithm on knapsack instances with n
items and item weights chosen uniformly at random from 1; : : : ; R.

uncorrelated strongly correlated

n=R 100 1000 10000 100 1000 10000

100 :002 :002 :002 :002 :002 :076
1000 :002 :002 :003 :019 :078 :172
10000 :004 :005 :010 :050 1:19 25:2
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Formulations
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0-1 Knapsack formulations

Pro�ts pi and weights wi are assumed to nonnegative

integer program:

Maximize p1x1 + p2x2 + : : :+ pnxn

s.t. w1x1 + w2x2 + : : : wnxn � c

x1; x2; : : : ; xn 2 f0; 1g:

For unbounded knapsack replace f0; 1g by fintegersg above.

nonlinear integer program:

Maximize p1x1 + p2x2 + : : :+ pnxn

s.t. w1x
2

1
+ w2x

2

2
+ : : : wnx

2

n � c

x1; x2; : : : ; xn 2 f0; 1g:
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0-1 Knapsack relaxations

Maximize 2x1 + x2

s.t. x1 + x2 � 1

x1; x2 2 f0; 1g:

Maximize 2x1 + x2

s.t. x1 + x2 � 1

x1; x2 2 [0; 1]:

Maximize 2x1 + x2

s.t. x
2

1
+ x

2

2
� 1

x1; x2 2 f0; 1g:

Maximize 2x1 + x2

s.t. x
2

1
+ x

2

2
� 1

x1; x2 2 [0; 1]:

(2,1)

 x + y <= 1
2x 2 <=1+y

(2,1)
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Solution techniques
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Basic optimization

Minimize f (x) for x in some domain

y

x

f(x)
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Optimality conditions

yy

x

f(x)

x

Necessary condition for optimality of x is f 0(x) = 0. f 00(x) > 0 is su�cient
condition for local optimality. For convex functions, �rst condition is su�cient.

For constrained optimization, KKT conditions are necessary (Kuhn, Tucker
'54, Karush '39).
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Integer programming

min 5x + 8y subject to

:9x + y � 1:5; x + 3:1y � 2:4

0 � x � 3:5; 0 � y � 3:3; x; y integral

 y = 3.3

 c=(−5,−8)
 5x + 8y = 8

 5x + 8y = 21

 5x + 8y = 34

 5x + 8y = 47

 .9x + y = 1.5

 x + 3.1y = 2.4

 x = 3.5
 c
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LP relaxation

min 5x + 8y subject to

:9x + y � 1:5; x + 3:1y � 2:4

0 � x � 3:5; 0 � y � 3:3

 c c
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LP relaxation + branching

min 5x + 8y subject to

:9x + y � 1:5; x + 3:1y � 2:4

0 � x � 3:5; 0 � y � 3:3

min 5x + 8y subject to

:9x + y � 1:5; x + 3:1y � 2:4

0 � x � 1; 0 � y � 3:3

min 5x + 8y subject to

:9x + y � 1:5; x + 3:1y � 2:4

2 � x � 3:5; 0 � y � 3:3
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Branch and bound
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cplex-log2.txt
Problem 'pp08a' read.
....
Reduced MIP has 133 rows, 234 columns, and 468 nonzeros.
Reduced MIP has 64 binaries, 0 generals, 0 SOSs, and 0 indicators.
....
        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap

*     0+    0                        27080.0000                     77     --- 
      0     0     2748.3452    51    27080.0000     2748.3452       77   89.85%
*     0+    0                        14300.0000     2748.3452       77   80.78%
*     0+    0                         7950.0000     2748.3452       77   65.43%
      0     2     2748.3452    51     7950.0000     2748.3452       77   65.43%
Elapsed real time =   0.03 sec. (tree size =  0.00 MB, solutions = 3)
*   100+   94                         7860.0000     2848.3452      428   63.76%
*   100+   90                         7640.0000     2848.3452      428   62.72%
   2862  2111     6556.5595    28     7640.0000     3981.3452     9387   47.89%
   6557  5339     6788.4524    21     7640.0000     4254.2976    20447   44.32%
* 10017+ 8320                         7630.0000     4369.3452    30879   42.73%
* 10017+ 8067                         7520.0000     4369.3452    30879   41.90%
* 10017+ 8047                         7510.0000     4369.3452    30879   41.82%
* 10017+ 7947                         7480.0000     4369.3452    30879   41.59%
  10017  7949     7152.1667    16     7480.0000     4369.3452    30879   41.59%
....
 467260 381944     6279.9524    23     7480.0000     5330.2500  1336479   28.74%
Elapsed real time =  76.80 sec. (tree size = 86.82 MB, solutions = 9)
 488008 398616     6870.4881    16     7480.0000     5340.1310  1393871   28.61%
 508767 415262     7018.3810    21     7480.0000     5350.3452  1451784   28.47%
 529510 431893     5359.7738    26     7480.0000     5359.7738  1509653   28.35%
 550267 448498     5819.7024    30     7480.0000     5368.3929  1567040   28.23%
 570955 465047     7091.7738    13     7480.0000     5377.4405  1624524   28.11%
....
 760995 616110     6726.4405    24     7480.0000     5445.6548  2152219   27.20%
 778020 629628     6542.1548    30     7480.0000     5451.3214  2199840   27.12%
 794094 642371     6215.4881    25     7480.0000     5456.2024  2244463   27.06%
 811975 656559        cutoff           7480.0000     5461.4405  2294026   26.99%
 829297 670288     6740.9167    28     7480.0000     5466.6786  2342402   26.92%
 846366 683716     6716.6786    22     7480.0000     5471.6786  2389544   26.85%
Elapsed real time = 143.55 sec. (tree size = 155.11 MB, solutions = 9)

Page 1
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Cutting planes

cutting plane: an inequality satis�ed by integral solutions of linear inequalities.

min 5x + 8y subject to

:9x + y � 1:5; x + 3:1y � 2:4

0 � x � 3:5; 0 � y � 3:3; x; y integral

c

38



Gomory-Chv�atal cutting planes (cuts)

x � 3:5) x � 3

y � 3:3) y � 3

(:9x + y � 1:5) + (:1x � 0)!

x + y � 1:5) x + y � 2

(x + y � 2)� :6 + (x + 3:1y � 2:4)� :4!

x + 1:84y � 2:16!

x + 2y � 2:16) x + 2y � 3:

Every integer program can be solved by Gomory-Chv�atal cuts (Gomory '60),
though it may take exponential time in the worst case (Pudl�ak '97).
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cplex-log.txt
Problem 'pp08a' read.
....
Reduced MIP has 133 rows, 234 columns, and 468 nonzeros.
Reduced MIP has 64 binaries, 0 generals, 0 SOSs, and 0 indicators.
....
        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap

*     0+    0                        27080.0000                     77     --- 
      0     0     2748.3452    51    27080.0000     2748.3452       77   89.85%
*     0+    0                        14300.0000     2748.3452       77   80.78%
      0     0     5046.0422    48    14300.0000     Cuts: 133      153   64.71%
      0     0     6749.5837    24    14300.0000     Cuts: 130      265   52.80%
*     0+    0                        10650.0000     6749.5837      265   36.62%
      0     0     7099.1233    27    10650.0000      Cuts: 53      327   33.34%
      0     0     7171.1837    28    10650.0000      Cuts: 35      356   32.66%
*     0+    0                         7540.0000     7171.1837      356    4.89%
      0     0     7176.2716    31     7540.0000      Cuts: 19      370    4.82%
      0     0     7187.8155    33     7540.0000      Cuts: 20      388    4.67%
      0     0     7188.4198    28     7540.0000       Cuts: 4      398    4.66%
      0     0     7189.5182    30     7540.0000       Cuts: 9      409    4.65%
      0     0     7189.5877    30     7540.0000   Flowcuts: 5      413    4.65%
      0     0     7189.9535    26     7540.0000   Flowcuts: 2      420    4.64%
      0     2     7189.9535    26     7540.0000     7190.0161      420    4.64%
Elapsed real time =   0.27 sec. (tree size =  0.00 MB, solutions = 4)
*    50+   40                         7530.0000     7218.8496     1733    4.13%
*    55    44      integral     0     7520.0000     7218.8496     1783    4.00%
*    60+   45                         7490.0000     7218.8496     1892    3.62%
*    60+   38                         7420.0000     7218.8496     1892    2.71%
*   110+   53                         7400.0000     7238.6753     2712    2.18%
*   210    64      integral     0     7350.0000     7255.3139     4760    1.29%

Implied bound cuts applied:  1
Flow cuts applied:  149
Flow path cuts applied:  23
Multi commodity flow cuts applied:  5
Gomory fractional cuts applied:  34
....
Total (root+branch&cut) =    0.95 sec.

Page 1
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cplex_speedups Chart 4

Page 1

CPLEX version-to-version improvements from 1991-2013
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Applications
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Steel industry application

Context: Large steel plant (3 million tons of plates/year � 10,000 tons/day)
in East Asia moving from a producer-centric model to a customer-centric model

Goal: Optimization tool to generate a production design { a detailed desciption
of production steps and related intermediate products

Timeline: 1.5 years
(5 man years on optimization, 25 man years on databases/GUI/analysis)
(joint work with J. Kalagnanam, C. Reddy, M. Trumbo)
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Manufacturing process
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Consulting Issues

� 2+ research man years spent de�ning problem (high complexity)
- Very large number of constraints including objectives masked as constraints
- 500+ pages of speci�cations: scope of problem not known at contract signing

� High level problem has non-linearities

� Software/data issues - 1000+ �les

� 30 minutes of computing time allowed
- 100+ complex cutting stock problems with up to 2000 orders solved via
integer programming column generation
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Pipeline management

Schedule injections of batches of oil on a pipeline network while minimizing
interface costs, delays, and power costs and satisfying tank constraints

(joint work with V. Austel, O. G�unl�uk, P. Rimshnick, B. Schieber)

A pipeline network has many pipelines, each with multiple segments, each of
which can run at multiple 'natural rates'.

Timeline: 2.5 years (10+ man years on optimization

46



IBM Research

Corporation

Inputs to Batch Sequencing Problem



batch sequences

pipeline segments

terminals

0 0.9

1.5

2.7

2.50

0


Interface cost

table
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Batch sequencing

When the pipeline consists of single segment, the cost of a batch sequence
depends only on interface costs of adjacent batch pairs: batch sequencing
reduces to the Asymmetric TSP problem.

0 1 2 3 4 5 6 7 8 9

0 Chicago 0
1 Erie 449 0
2 Chattanooga 618 787 0
3 Kansas City 504 937 722 0
4 Lincoln 529 1004 950 219 0
5 Wichita 805 1132 842 195 256 0
...
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Vehicle routing application

Context: Food distribution company in North America trying to improve delivery
to customers within desired time windows, while minimizing travel costs.
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VRPTW with driver preferences

[10,90]

Customers have preferred drivers; penalize for delivery by non-preferred driver.

� 200-300 customers, 20-30 routes per shift, 3-6 shifts per day
� Create preference relationships between � 200 drivers and 1000 customers
(joint work with O. G�unl�uk, G. Sorkin)
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Facility location problem

© 2009 IBM Corporation

1c

facilities

customers

unit supply costs

2c

Inputs:
Facilities + capacities
Cost of opening each facility
Customers + demands
Unit cost of supplying a customer
from each facility

Goal:
Minimize cost of opening
facilities to satisfy demand

Related to Fermat-Weber problem
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Machine learning application

. Insurance company wants to answer a long list of customer questions, but
has a budget for only 500 answers (Dmitry Malioutov).

© 2009 IBM Corporation

Does it cost 

more to insure 

a red car?

How much 

liability insurance 

is required in NJ?

Will my insurance 

go up if I let my 

girlfriend drive my 

car?

Will my insurance 

go up if I let my 

boyfriend drive 

my car?

How much liability 

insurance is required 

in Princeton?
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. The problem is an \active learning" problem: try to optimize which questions
to answer.

. Balance \information gain" vs. \diversity" for each answered question.

Inputs:

1) Each node/question has a notion of how much additional information it will
add by providing a human answer { this is the node cost.

2) The similarity of each question to other questions: there is no point in
answering the same question 20 times, so it's great to have a diverse set of
questions to ask humans to answer.
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DWave Quantum Computer

DWave: An adiabatic quantum computer performing \quantum annealing".

. A special-purpose analog machine employing \
ux qubits" arranged in a
Chimera graph structure solving the Ising Model Problem. DWave does not
guarantee optimality.
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DWave experiments

McGeoch and Wang: Experimental Evaluation of an adiabatic quantum system
for combinatorial optimization, ACMConference on Computing Frontiers 2013.

. DWave Two takes half a second versus half an hour for CPLEX 12.3. on
quadratic unconstrained boolean optimization (QUBO) problems de�ned on a
Chimera graph
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New York Times:
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New York Times (Nov 14,2013):

59



Chimera graphs

Chimera graph Cn: 8n
2 nodes with n2 K4;4 graphs arranged in a n � n grid.

C4
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QUBO problem

The Ising model problem is equivalent to the QUBO problem.

. The quadratic unconstrained boolean optimization problem (QUBO)
problem:Given an n � n matrix Q:

Min
∑
i ;j

Qi jxixj subject to x 2 f0; 1gn: (1)
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QUBO problems

McGeoch and Wang solve QUBO-miqp using the CPLEX MIQP solver

The CPLEX MIQP solver does branch-and-bound based on the QP relaxation:

Min
∑
i ;j

Qi jxixj subject to x 2 [0; 1]n: (2)
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QUBO problems

QUBO-milp: Classical mixed-integer linear programming formulation (assume
Q is upper triangular):

Min
∑

i<j Qi jzi j +
∑n

i=1Qi ixi (3)

subject to

x 2 f0; 1gn; (4)

zi j � xi 8i < j; (5)

zi j � xj 8i < j; (6)

xi + xj � zi j � 1 8i < j; (7)

zi j � 0 8i < j: (8)

For any �xed i ; j , the constraints (5)-(8) are called Fortet inequalities or
McCormick inequalities and force zi j to equal xixj when xi ; xj 2 f0; 1g.
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Experiments

. CPLEX 12.3/QUBO-MILP takes 93.8 seconds in the worst case and not
half an hour: Dash, Puget '14

. Simulated annealing heuristic takes 0.02 seconds on 512 node instances:
Boixo, Ronnow, Isacker, Wang, Wecker, Lidar, Martinis, Troyer '13.

. Specialized heuristic takes 0.01 seconds on 439 node instances: Selby '13.
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Conclusions

. Many real-life optimization problems can be modeled as instances of NP-hard
problems. However, as the data and problem sizes are restricted, such problems
can often be solved with customized techniques.

. Linear-integer programming is the most widely used optimization tool
in practical applications, but some important problems (e.g., portfolio
optimization) are modeled as nonlinear (quadratic) integer programs.

. Linear constraints are more common in combinatorial problems, whereas
nonlinear constraints are more common in systems where the physics is
important.
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