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There have been stunning advances in Machine
Learning and Perception recently.
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Computer Vision: The ImageNet Challenge

ILSVRC top-5 error on ImageNet
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Speech Recognition

—
Loud and clear

Speech-recognition word-error rate, selected benchmarks, %
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Machine Translation Japanese2English

NO. 1 NO. 2:
Kilimanjaro is a snow-covered mountain 19,710 feet high, and is said to Kilimanjaro is a mountain of 19,710 feet covered with snow and is said
be the highest mountain in Africa. Its western summit is called the to be the highest mountain in Africa. The summit of the west is called

*"Ngaje Ngai” in Masai, the house of God. Near the top of the west there
is a dry and frozen dead body of leopard. No one has ever explained
what leopard wanted at that altitude.

Masai “Ngaje Ngai,” the House of God. Close to the western summit
there is the dried and frozen carcass of a leopard. No one has explained
what the leopard was seeking at that altitude.

Kilimanjaro is 19,710 feet of the mountain covered with snow, and it is
said that the highest mountain in Africa. Top of the west, “Ngaje Ngai”
in the Maasai language, has been referred to as the house of God. The
top close to the west, there is a dry, frozen carcass of a leopard. Whether
the leopard had what the demand at that altitude, there is no that
nobody explained.
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Mastering Go and Chess -- from scratch

Train p(next-move|board), value(board) networks.
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At last — a computer program that
can beat a champion Go player pace4ss

ALL SYSTEMS GO



https://www.nature.com/articles/nature24270
https://arxiv.org/abs/1712.01815
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Whats behind this success?

Tons of Data

Distributed Computation
Optimization!

Complex end-to-end pipelines

o  Still an art with lots of open questions.
o Mainly supervised learning.
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What does this mean for the emerging world of
Robotics?
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Robots in Factories BMW Manufacturing Plant

Spartanburg, South Carolina

e Body Shop
o 380 robots, 450 humans
o 6 hours per car (7500 spot welds)
e Paint shop
o 100 robots
e Assembly line
o ?robots, mostly manual
e 1400 cars per day

SENSE-PLAN-ACT paradigm

GOOgle Confidential + Proprietary


http://www.youtube.com/watch?v=VpwkT2zV9H0&t=20
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The Real World

PERCEPTION
LEARNING & ADAPTATION
CONTROL

Google
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http://www.youtube.com/watch?v=KnPiP9PkLAs&t=82
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Robotics at Alphabet
Self-driving Cars

Early Rider Program in Phoenix, AZ
3M+ miles, 1B+ miles in sim (2016)
1.25M deaths (2014), 32K in US
~22K+ speeding, alcohol, distraction

Google

Self-flying Vehicles
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AsimovV’s “Three Laws of Robotics” Handbook of Robotics, 2058 (1942)
e Arobot may not injure a human being or, through inaction, allow a
human being to come to harm

e Arobot must obey orders given it by human beings except where
such orders would conflict with the First Law.

e A robot must protect its own existence as long as such protection
Google does not conflict with the First or Second Law. Confidental + Proprietary
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Preliminaries and Background
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/ things about Deep Learning

1. Training and Test data drawn i.i.d from same distribution.

{(ﬂfiayi) 2:1 ~ p(ﬂ%y)

2. Optimization Problem

i
arg Imin Z c(fo(wi), i) + Q(0)

GOOgle Confidential + Proprietary
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/ things about Deep Learning

3. “Shallow” vs “Deep” Predictors

fw(z) = Wo(x) fo(x) = fw, (fw (o fo (fw () -2 0)

fiv @) = o(Wa) i}
B
4. Computation Graphs & a "_'@/ }C’D

Backprop

Tensors flowing (B x Hx W x D) ( ) '
Google

_ af5($3; w5) af3(334; w4) 8]‘11(5171; wl)
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/ things about Deep Learning

SGD Trainer

5. Stochastic Gradient Descent e el o e

i€B, - (G dn
Parallel comp; PS architecture ——

6. Mature Autodiff Libraries (AR CTD,

E.g. TensorFlow, pytorch, caffe, ... f

Google
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And the Last thing

7. “Alchemy”

- Choice of loss function
- Choice of architectures: CNNs, RNNs, DNNSs,...
- Orchestration of the Optimization (e.g., learning rates)

7. It works!

Surprisingly effective despite non-convexity, with millions
of parameters -- many local mins of similar quality.

Google
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Robots (+world) as Dynamical Systems

e States
r; € R"

e Controls
u € R™

e Dynamics R f(xa u)

? ) ."r'=; [f+m Eillﬁﬂféi—gtxlﬁﬂ\'"
xt | 1 xt , ut _' me + r.ral.,lh'inzﬂ i _ ‘3 _
=—_2m [—f cos § — m,l0° cos @sind — (m,. + m,)gsin f
sin !

Google (. +mys
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Preliminaries: Robots (+world) as Dynamical Systems
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Ingredients: Perception-Control Loop Controls/Actions

Steering
Throttle
Break

Observation

Dynamics/”Model”

Ct (xtv ut)

Rewards/Costs

Confidential + Proprietary
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Controls/Actions

Where are the Learning Problems?

Steering
Policy Throttle
Break

Observation

Dyvnamics/”’Model’’

Ct (CUt, Ut)

Rewards/Costs

GOOgle Confidential + Proprietary
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Learning and Optimization

i ) ' —t : p i i
compute () = . T (MC policy gradient
fita EV P Zt — #. t ( p Y 8 )

estimate the return L Qs(s,a) (actor-critic, Q-learning)

estimate p(s’[s,a) (model-based)

generate samples

(i.e. run the policy)

0 < 0+ aVyJ(0) (policy gradient)

RGNS 7(s) = arg max (s, a) (Q-learning)

optimize mg(als) (model-based)

GOOgle (from Sergey LeVII"Ie’S SlldeS.) Confidential + Proprietary
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Many Sources of Complexity

e What is the current state?
o State Estimation from high-dimensional observations from noisy sensors

e What is the Dynamics of the system?

o Known (games, factories)

o Stochastic

o Discontinuous -- problems involving contact

o May be completely unknown
What costs/rewards should we use to elicit desired behavior?
What policy parameterization to use?
Exploitation-vs-Exploration?
How to optimize?

GOOgle Confidential + Proprietary
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Optimization for Robot Learning, Perception, Control

Non-convex optimization

21T Dynamic Programming,

Structured Nonlinear Programming . | T | Optimization & Sampling

- |
Y /
|

Derivative Free Optimization

Google

Polynomial Optimization & SDPs
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Imitation Learning and Behavior Cloning

e Learning policies by mimicking human decisions and behaviors

Driving: large datasets

Manipulation (Daydream coffee study)

Doesnt work for all problems, e.g. bipedal locomotion

e Does not need dynamics-free -- and supervised learning works well!

GOOgle Confidential + Proprietary



&8 Robotics@NYC

Imitation Learning and Behavior Cloning

e Optimization Problem -- supervised learning

Wiy = UPDATE(wy, 17, V fi(x))

{ Parameter Server "&":;:’&“ ]
o oo I T\
Demonstrations { (Oé 7 U;* ) }t,i 2 |2 |2 2
1 t ' !
) — =93 B9 3
Training mémz ZOSS(Ui*a We(oi)) + Q(Q)
it

SGD-based Optimization - :
pEtl = gF — g Vloss(uy*, mg(0}))

1,tE By
Distributed Training: Parameter-server architecture
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Naive Supervised Learning

Ross, Gordon and Bagnell, 2011 -- Cart racing experiments

Google

Confidential + Proprietary


http://www.youtube.com/watch?v=ywH9Z2NivjY&t=41
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Imitation Learning =/= Supervised Learning

e Training/Test Distribution mismatch
o With perception in the loop, encountered states become functions of
the policy -- contrast with supervised learning (e.g. photo tagging).
e Dealing with cascading errors
e DAGGER algorithm

2. run wg(as|os) to get dataset D, = {oq,..., ,. T 1
3. Ask human to label D, with actions a; l ]
4. Aggregate: D « DU D,

—e— DAgger (B, = I{i=1)
- = -SMiLe (o= 0.1)
Supervised

1 15 2 25
Number of Training Data x10°

1
0 05
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NVl D |A Self-d riving How do they deal with cascadling errors?

Recorded
steering
wheel angle

Adjust for shift Desired steering command
and rotation

Network

Left camera computed
steerning 3

|_. L
Random shift 23 command
Center camera * SO CNMN 40()

Back propagation Error

Output: vehicle control

Fuly ted layer
Fully-connected (ayer
Fully-connected layer

Convolutional
feature map
B4@1x18

Convalutional
feature map
BA@3x20

and cruises right through

Convolutional
fealure map
28@5x22

Convolutional
featurs map
36@14x47

Convalutional
fealure map
24@31x98

Normalized
input planes
3@B6x200

Input planes
3@66x200

Google 72 hours driving data, 250K parameters, 2 interventions every 10 mins


http://www.youtube.com/watch?v=-96BEoXJMs0&t=34

Safer Air Sensing on Self-flying Vehicles

e Accurate sensing of relative motion wrt
air is critical for safe & efficient control
of UAVs on high-speed outdoor
missions.

e Pitot tubes are airspeed sensors, prone
to failure (Air France 2009) and hard to
Maintain on small UAVs.

e Can we clone the Pitot tube using a Pitot Tube
neural net trained on hundreds of flight (Henri Pitot, 1695-1771)
logs?

Google



http://go/aerial_robotics
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Safer Air Sensing on Self-flying Vehicles
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http://go/aerial_robotics
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The Arm Farm: Self supervision

Training in 800K grasp attempts on 14 robots.

Figure 3. Di it of the grasp sample setup. Each grasp i con-
sists of 1" steps, with each tnle step corresponding to

anlmg 1 :mdp ep Th final dataset contains samy ples . . .
Google (Ti, ph — pi, £) that of ihie image, avectar Ear; the oz Confidential + Proprietary
rent pose to the fin lpseandmegx sp success label.


http://www.youtube.com/watch?v=iaF43Ze1oeI
http://www.youtube.com/watch?v=l8zKZLqkfII
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Tools 1: Supervised Learning in TensorFlow

e Colaboratory
e TensorFlow

GOOgle Confidential + Proprietary



&% Robotics@NYC

Optimal Control and Trajectory Optimization

(example due to tassa@)

states
X = (pm:pysgnu)
T—-1
controls . . mliln Z cr(x¢, uy) + er(X7)
0---uT_1
t=0
u—=—I(w,a
( ’ ) subject to:
X —
dynamics t+1 f(Xta ut)
b(v,w)cos(0) —0.5 < < +0.5
Xyiy =X; + b(t J:lSi‘-ﬂ.(ﬂ) _2 0 >U = +2 0
i 3 sin~ ! (sin(w) f(v)d™ ') 05
ha —0.5rad < w <0.5 rad

—2m/s* < a < 2m/s?

dynamics: stochastic, discontinuous, complex simulations, unknown

Confidential + Proprietary
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Obstacle Avoidance with Safety Shields

GOAL

e Nested Optimization

e Nonlinear Programming (e.g.,
SQP) with rich structure.

obstacle e Need for real-time optimization

(model predictive control)

START
GOOgle Confidential + Proprietary
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Constructing Safety Shields in 3D Environments (RSS-2017)
O D—{11,05.. 700} C S, —{zeRp) <1}

convex, increasing degree increasing non-convexity

Fig. 6: Minimum distance between two (nonconvex) sublevel
sets of degree-4 polynomials

Polynomial Optimization = Semi-definite Programming relaxations.

GOOgle Confidential + Proprietary
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Back to Optimal Control: Linear Quadratic Regulators

T-1 T-1
min Z cr(x¢, 0t) + cp(xr) min Z x?Qazt -+ utTRut + 2h QT
ugp...ur—1 —0 uUQ... UT—1 0
subject to:
X1 = f (X, we) Tir1 = Az + Buy

To 1S given

GOOgle Confidential + Proprietary
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LQR: Value Function

Define sequence of functions,
Vi:RP—Rt=0...T

that are the minimum values achieved for the “tail subproblems” from a given state,

T—1
: T T T
Vi(2) = min g T, Quy + uy Ruy + xpQrer, =2
ug...uT—1
t=t

Notice,

Vo(xgp) Vr(z) = 2" Qrz

Confidential + Proprietary
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LQR Dynamic Programming
Bellman Equation

T—1
Vi(z) = min [zTQz +u’Ru+ min Z o1 Qxy + vl Ruy + m%QTﬂfT]
u Ut41...UT—1 t+1

\ 7

‘/15+1 (Az+Bu)

- cost at time t for taking action u at state z.
- min cost-to-go for where you land at t+1 as a consequence

Assume: ‘/t—l—l (Z) = ZTPt+1Z, PT — QT

GOOgle Confidential + Proprietary
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LQR Algebra

e by DP,

Vi(z) = 27Qz + min (w” Rw + (Az + Bw)T P11 (Az + Bw))

- . . T * * * *
e can solve by setting derivative w.r.t. w to zero: Vi(z) = 2'Qz+w" Ruw” + (4z + Bw")" Piy1(Az + Buw")
= T (Q +ATP A— AP, B(R+ BTPtHB)ﬁlBTPzHA) 2

2w R + 2(Az + Bw)TP,y1B =0 = &b

where

i ; ; P,=Q+ATP, . A— ATP,1B(R+ BTP,11B)"'BTP, .14
e hence optimal input is g=iens Do R BeiFpay e

w*=—(R+ BTPt+1B)*lBTPt+1Az

GOOgle Confidential + Proprietary
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LQR solution

1. set Py :=Qf
2. ot =N . o,

Pi1:=Q+ATPA— ATPR,B(R+ BTP,B)"'BTP,A

3. fort = U, e ,N - 1, define Kt = *—(R+ BT1Pt+1B)—lBTPt+1A

4. fort=20,...,N — 1, optimal u is given by 'u,i "= Kizs

GOOgle Confidential + Proprietary
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Extensions: Time-varying LQR, Infinite-horizon LQR

LQR is readily extended to handle time-varying systems
Tr+1 = Ay + Bruy

and time-varying cost matrices

N-1
J = Z (mgQTmT g quﬂ'ur) I :IT}:TQme

~——N

Steady State Solution for Infinite Horizon Problems: Algebraic Ricatti Equation
i T T —1 T
PSS:Q+A PSEA"_A PSS_B(R+B PssB) B PssA

GOOgle Confidential + Proprietary
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Tools: Cartpole Balancing on OpenAl Gym

i =% [f + my, sin 8{16° + g cosd)
. . . M, + T, sin” 0
e Power of Linearization ; 1 S o
f = e [—f cos # — myld” cos fsind — {m, + my)gsin 6
{{mn. + mysin” 0) ]

= B ) AR [g} e {EL}E_M““ fhi 90)

e Surprisingly large basins of attraction
e Why does it fail outside that basin?

GOOgle Confidential + Proprietary
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Other Gym Tasks

e Average reward per episode over N episodes
e Total number of episodes

HalfCheetah-v] defines "solving” as getting average reward of 4800.0 over 100

consecutive trials.
HalfCheetah-v0 Swimmer-v0 Hopper-v0
Make a 2D cheetah Make a 2D robot Make a 2D robot
robot run. swim. hop.

Walker2d-v0O Ant-v0 Humanoid-v0
Gcog|e Make a 2D robot Make a 3D four- Make a 3D two- Confidential + Proprietary
walk. legged robot walk. legged robot walk.
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lterative LQR/Differential Dynamic Programming

T-1
Nonlinear Optimal Control Problem: min > ee(xe, i) + er(x)
ug...up_1 —
where: x:41 = f(x,ue), t=0...(T —1)

Equivalent unconstrained problem:

min J(U) = co(xo, ug) + c1(f (2o, ug), ur) + co(f(f (20, uo), ur), uz) ..

ug...uT—1

Newton’s Method: Uk+1 — Uk — [VQJ(Uk)]_l[VJ(Uk)]

GOOgle Confidential + Proprietary
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lterative LQR/DDP

e Initialize uéo), . u§911

e For k=0, ...until convergence
o Simulate (k) _ (k) (k) = —
i = fley yuy '), t=0...(T"—-1)

o Linearize Dynamics around current trajectory:

af(z™, u Of (xF) ul®)
k k k ) k ) k
iy = Sl )+ | = () | S ()
N-1
o Solve Time-Varying LQR Problem 4 > (2 + 6z.) 7 Q(z, + 5z.)
=0
N-1 0411 = Aidxs + Biduy

+ Y (ur+6u.) R(u, + du,)
T7=0

o SetUt i= Us+ 5%1;
Google

Confidential + Proprietary
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Examples

path length | |
control sparsity (?ar parking with control
obstacle avoidance limits.

Google

With an extension of iLQR to handle constraints.

In Mujoco: Torque
control of a manipulator.

Confidential + Proprietary
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Model Predictive Control / Receding Horizon Control

e Dueto errors in dynamics/ change in the
environment, executing “open-loop”

controls g ... UpP_q

may no longer be optimal.

e Replanning into the future at every
time-step, defines a closed-loop policy:

U: — TTMPC (ZUt)

T-1
arg min th(xt,ut)+cT(xT) subject to xyiki1 = f(%pan, ue), T given

Ut yoo Ut T
AL —

Confidential + Proprietary
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https://docs.google.com/file/d/1aNcXERAsJ3Iz3oNqm9hkNMHBVOWsUAEA/preview
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Model-based Reinforcement Learning

e Collect a bunch of trajectories by executing e.g. random controls

1,2 N

T ,T ...T 7" = {xy, ug, 7, Ui, .. Ty, g

e Fit a Dynamics Model

A ) k k . ky|2
fo = arg m@ln Z ||517t+1 - fﬁ(xt ) ut)”? Nagabandi et al, 2017
tk

Solve Optimal Control wrt current dynamics
Collect new trajectories

Refit new dynamics model

Repeat

Google
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Guided Policy Search: Vision from Optimal Control

Key idea: Use perfect-state optimal controllers to supervise learning of visual
policies.

autonomous execution

Google


https://arxiv.org/pdf/1504.00702.pdf
http://www.youtube.com/watch?v=CE6fBDHPbP8&t=38
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Derivative-Free Optimization

e Optimization problems where gradients are unavailable are pervasive.
o Complex simulators .
o Legacy Code 1m1in f(.f)
o Inner optimization routines X

e How can we still do gradient descent?

xk—|—1 _ :Ij‘k L an(Ik)

GOOgle Confidential + Proprietary
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DFO for Policy Optimization and Optimal Control

i i - return = 0.0
e Policy Optimization x = inifial_state
for tin range(0, T):
9 action= 7g(x) return(0)
reward, x =env.step(action)
return = return + reward

ot = 08 — nV (—return(6))

e Optimal Control: Need Jacobians for Linearization Step

x = f(x,u) =~ f(x*,u")+ l%} (x—x*]—l—[%} (u—u*)

GOOgle Confidential + Proprietary
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DFO: Finite Differences

Taylor Approximation: For any perturbation direction p,

ok
f:R* - R™ f(xk+p)%f(xk)—|—af(f§x )p
So,
k
p=ed, %d ~ % f(x" + ed) — f(afk)]

Classic Finite Differences:

— e,  —

e - f(a" + ee;) — f(:ck)]

e [éﬂx’ﬂ)] of () 1

GOOgle Confidential + Proprietary
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DFO: Linear Regression

e Choose a set of perturbation directions di...ds
e Compute finite differences

r; —

f(a* +ed) — f (x@}

e Solve least squares regression problem: can improve sample efficiency by using
priors such as sparsity.

: 12 2
argmjnz HAdZ TZHZ +7HAHfro

GOOgle Confidential + Proprietary
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Training Neural Net Policies with DFO



https://arxiv.org/pdf/1703.03864.pdf
http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
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Quadruped Locomotion with DFO: Sim2Reality Transfer

e Improved Finite-difference derivative approximations (ICRA-2018)
o Quadruped Locomotion with Speed Limits

BODY
e - N
t2 (.
ihT;f\‘ .
Ol A LY
i b

S =Asin(tv)
E =B sin(t v + phi_leg)

Confidential + Proprietary
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Summary

e Exciting advances in Machine Learning
e Robotics is a great source of ML and Optimization Problems

e Topics we discussed
o Imitation Learning
m Supervised learning with care
o  Optimal Control
m Structured QPs, Nonlinear Programming
o Model-based Reinforcement Learning
m Iterative Learning and Optimization
o Derivative Free Optimization
m  Common situation when working with simulators

GOOgle Confidential + Proprietary



