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This lecture: Instructor:
e Convex optimization Amir Ali Ahmadi

Convex sets

Convex functions

Convex optimization problems

@)
@)
@)
o Why convex optimization? Why so early in the course?

Recall the general form of our optimization problems:

min. f(x)

s.t. x €

e In the last lecture, we focused on unconstrained optimization: = R™.
e We saw the definitions of local and global optimality, as well as first and
second order optimality conditions.

* In this lecture, we consider a very important special case of constrained
optimization problems known as "convex optimization problems".
e For these problems,
o f will be a "convex function”.
o Q will be a "convex set”.
o These notions are defined formally in this lecture.

e Roughly speaking, the high-level message is this:
o Convex optimization problems are pretty much the broadest class of
optimization problems that we know how to solve efficiently.
o They have nice geometric properties;
" e.g., alocal minimum is automatically a global minimum.
o Numerous important optimization problems in engineering,
operations research, machine learning, etc. are convex.
o There is available software that can take (a large subset of) convex
problems written in very high-level language and solve it.
* You should take advantage of this!
o Convex optimization is one of the biggest success stories of modern
theory of optimization.
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Convex sets

Definition. A set Q € R" is convexy, if for all x, y € Q, the line segment
connecting x and y is also in . In other words,

x,yEQAE[01]>Ax+(1—-A)y€EQ

e A point of the form Ax + (1 — A)y, A € [0,1] is called a convex combination

of x and y.

e Note that when A = 0, we are at y; when A = 1, we are at x; for
intermediate values of A, we are on the line segment connecting x and y.

[llustration of the concept of
a convex combination:

Convex:

Not convex:
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Convex sets & Midpoint Convexity

Midpoint convexity is a notion that is equivalent to convexity in most practical
settings, but it is a little bit cleaner to work with.

Definition. A set Q € R" is midpoint convex, if for all x, y € (, the midpoint
between x and y is also in (). In other words,

1 1
L2 YEN=>—=—x+ =y €.
X,y ZX 23’

e Obviously, convex sets are midpoint convex.
¢ Under mild conditions, midpoint convex sets are convex
o e.g. aclosed midpoint convex sets is convex.
o What is an example of a midpoint convex set that is not convex?
(The set of all rational points in [0,1].)

The nonconvex sets that we had are also not midpoint convex (why)?:

Q<)
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Common convex sets in optimization

(Prove convexity in each case.)

e Hyperplanes: {x| a’x = b} (a € R",b € R,a # 0)

 Halfspaces: {x| a’x < b} (a € R",b € R,a # 0)

Proof - le‘?(He{?t'QT’KQo}.TqKQ 736'“ / ]
a’ (T (1-Ay) = Va4 (FNdy < Abr(1-Nb=b //
O\T’K$\0
D (l-'ﬂ; el D {’X\ } ////
e Euclidean balls: {x| ||x — x.|| < r} (x. € R%,7 € R ||.|| 2-norm)
Proof Let B::{ul “’x:)tc)]\qu .que 1y eB. /@AV
” Dot ( 1-7) -u{ ”_}\(1_1c (-A(y _xc)n XA
hmo; 19eD

’rv'“7|<’“< |7 x4 02 - £ At |+ D g £ e W=y 2Bty e B

IV\@L D

e Ellipsoids: {x|(x — x.))TP(x —x.) <7} (x. ER,r €R,P > 0)

(P here is an n X n symmetric matrix)

Proof hint: Wait until you see convex functions
and quasiconvex functions. Observe that
ellipsoids are sublevel sets of convex quadratic

functions.
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Fancier convex sets

Many fundamental objects in mathematics have surprising convexity
properties.

For example, prove that the following two sets are convex.

e The set of (symmetric) positive semidefinite matrices:
Smxn = {p € S™"| P > 0}

XT
— ~—
2 >3

Proot. det PAle, Bre et Aelo). o7 (QA40-NB1x= I? Ar 4 (-D)x7Bx 50.0

Xy
e.g. {x; Y Zl [y Z] 7 0} Image credit: [BV04]

e The set of nonnegative polynomials in n variables and of degree d.
(A polynomial p(x;, ..., x,,) is nonnegative, if p(x) = 0,Vx € R™.)

e.g., {(c, )| 2x{ + x5 + c1x1%5 + cpx3x, > 0,V(xq, %) € R%}:
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Intersections of convex sets

e Easy to see that intersection of two convex sets is convex:
Q, convex, (), convex = 1, N (), convex.

Proof:

Pic K Xéﬂ‘ﬁﬂl ) ?eﬂl ﬂﬂl
'qufoﬂ]/ )14’("?)? eﬂ\ (b/(, ﬂ\ 15 OQV\\/Q)()

[i’/\ 7L+(|~’A)276~Q"L (bre Stvis tonvex)

I+ (-2)y e SL0 S ]

¢ Obviously, the union may not be convex: 3
7\/

aea
k(R t

Polyhedra

e A polyhedron is the solution set of finitely many linear inequalities.
o Ubiquitous in optimization theory.
o Feasible sets of "linear programs" (an upcoming subject).
e Such sets are written in the form:
{x| Ax < b},
where A is an m X n matrix, and b isanm X 1 vector.

e These sets are convex: intersection of halfspaces al-Tx < b;,
where a’ is the i-th row of A.

-1 0 0

1 0 -1 _ 10

eg, A= 0 1 ,b = 1
1 1 3
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Convex functions

Definition. A function f: R™ — R is convex if its domain is a convex set and for
all x,y in its domain, and all A € [0,1], we have

fOx+ (A =Dy) < Af () + A =Df ).

e In words: take any two points x, y; f evaluated at any convex combination
should be no larger than the same convex combination of f(x) and f(y).

1, . : :
e IfA= 5, interpretation is even easier: take any two points x, y; f

evaluated at the midpoint should be no larger than the average of f(x)

and f (y).
e Geometrically, the line segment connecting (x, f(x)) to (y, f(y)) sits

above the graph of f.

(f:R > R)
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Definition. A function f: R® — R is

e Concave,ifVx,y,VA € [0,1]

fAx+ (A =Dy) = Af(x) + (A =Df ).
o Strictly convex,ifVx,y,x + y,VA € (0,1)

fAx+ (A =Dy) <Af(x)+ A =DfQ).
o Strictly concave, if Vx,y,x # y,VA € (0,1)

fOx+ (1A =Dy) > Af (x) + (1 =Df ().

Note: f is concave if and only if —f is convex. Similarly, f is
strictly concave if and only if —f is strictly convex.

The only functions that are both convex and concave are affine functions; i.e.,
functions of the form:
f(x) =a"x + b, (a € R", b € R).

convex concave neither convex both convex and
(and strictly convex) (and strictly nor concave concave (but not
concave) strictly)

Let's see some examples of convex functions (selection from [BV04]; see this
reference for many more examples).

Examples of univariate convex functions (f: R - R):

o p0X

e —logx

e x% (definedonR,,) a=1lora<0
e —x%(definedonR,,) 0<a<1

e |x|%a=>1

e xlogx (definedonR,, )

e Try to plot the functions above and convince yourself of convexity visually.

¢ Can you formally verify that these functions are convex?

e We will soon see some characterizations of convex functions that make the task
of verifying convexity a bit easier.
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Examples of convex functions (f: R" - R)

« Affine functions: f(x) = a"x + b (foranya € R", b € R)

(convex, but not strictly convex; also concave)

Prosf : V]G[o,f), 7‘1(’)\1#("7‘)?):GT(FA’)H'(\-')«):;)-I-L

= 'Acﬁt+(l—"/\)aT‘}.F]H(l-))L::’H(x)Jf(l'?\)Hj). 0

e Some quadratic functions:

f(x)=xTQx+cTx+d

o Convexifandonlyif Q > 0.

o Strictly convex if and only if Q > 0.

o Concave iff Q < 0; Strictly concave iff Q < 0.

o Proofs are easy from the second order
characterization of convexity (coming up).

e Any norm: meaning, any function f satisfying:
a. f(ax) =|a|lf(x),Va eR
b. fx+y) < f(x) +f(¥)
c. f(x)=20,vx,f(x)=0=x=0)

Velen] B : _I
L : : -2
Jroof . £ (e (10)y) < F(AN)+F (-2 1l
x
ZA40)A(-NFY) . O 1
Examples:

o lxl],, = max|x|
1

n Z
: ||x||p=<2|xi|p) , p=1

i=1

. ||x||Q =xTQx,Q >0
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Midpoint convex functions

Same idea as what we saw for midpoint convex sets.
Definition. A function f: R" — R is midpoint convex if its domain is a convex
set and for all x,y in its domain, we have

1 1
FES2) <5 F0) +570).

e Obviously, convex functions are midpoint convex.
¢ Continuous, midpoint convex functions are convex.

Convexity = Convexity along all lines

Theorem. A function f: R™ — R is convex if and only if the function g: R - R,
given by g(t) = f(x + ty) is convex (as a univariate function), for all x in
domain of f and all y € R™. (The domain of g here is all t for which x + ty is
in the domain of f.)

e This should be intuitive geometrically:
o The notion of convexity is defined based on line segments.

e The theorem simplifies many basic proofs in convex analysis.

e Butit does not usually make verification of convexity that much easier;
the condition needs to hold for all lines (and we have infinitely many).

e Many of the algorithms we will see in future lectures work by iteratively
minimizing a function over lines. It's useful to remember that the
restriction of a convex function to a line remains convex. Here is a proof:

SUPPOSQ for Some f)t,‘}, ?(o(): f(')uw(#) was not lonvex.
= FAefal), 4,4 5T 9 (A% +(-2)xg) 7 q;cx.)-\»(l"/\);(xz)-

= 7e (')(-L (2 0(,4-([—]) 0(1)9): ‘f’ (:] ( 7L+a(\‘2)+(l-—')) (’)l-u(z‘})) )ﬁ/\ f (')\.,.a(,;h (1-])7" (7«1.0(17).
J
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Epigraph

Is there a connection between convex sets and convex functions?
e We will see a couple; via epigraphs, and sublevel sets.

Definition. The epigraph epi(f) of a function f: R™ - R is a subset of R"*1
defined as

epi(f) = {(x,t)| x € domain(f), f(x) < t}.

Theorem. A function f: R"™ = R is convex if and only if its epigraph is convex
(as a set).

Froof: Soppose ¥ mof onvex = 34,9 edom(®), AeLo1)
-6 F(Axs(-2)y) » Hw)+0-DHY). O
Pick (n,8m), (9, Flp)) e epr (F) .
O= (Mx (Y, AF0) 102 £9) ) & epi ().

5ulofo;e ep/ (£) not onvex = 3 (n, tz) ) (3,15;7) , ’AGLO;IJ

se. Poste, Rty PO D))y Mdae O-Dty
7 R+ 0-2)Fy)

.—__-741 hot (onvey. 0
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Convexity of sublevel sets

Definition. The a-sublevel set of a function f: R™ — R is the set
Sy = {x € domain(f)| f(x) < a}.

Several sublevel
sets (for different
values of )

Theorem. If a function f: R™ — R is convex, then all its sublevel sets are
convex sets.

7(3
e Converse not true.

* A function whose sublevel sets are {__E_?___ﬁ——:)%
X

all convex is called quasiconvex.

Quasiconvex but not convex functions

Proof of theorem :
Pick %,9e 5%, 1e[al)
LESu = F)gar ;5 Yo S = Hy)se
P convex = ‘P(]?t-(—(l-])y)s Af () + (V) FLy)
< A4 (1)
=

= A +0-7)ye S, N
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Convex optimization problems

A convex optimization problem is an optimization problem of the form

min. f(x)
st. gi(x)<0,i=1,..,m,
h](X) = 0, ] = 1, ...,k,

where f, g;: R™ — R are convex functions and h;: R™ — R are affine functions.

* Let Q denote the feasible set: O = {x € R"| g;(x) < 0, h;(x) = 0}.
o Observe that for a convex optimization problem (Q is a convex set
(why?)
o Butthe converse is not true:

» Consider for example, Q = {x € R| x> < 0}. Then Q is a convex set,
but minimizing a convex function over ) is not a convex
optimization problem per our definition.

» However, the same set can be represented as Q = {x € R| x < 0},
and then this would be a convex optimization problem with our
definition.

e Here is another example of a convex feasible set that fails our definition of a
convex optimization problem:

T (0 <o

/
D=4 g g, Mo
94 se
1'5 a Convex 5e7"- 73«4* r\efHuer

gl nor gl ave (Convex 7cumc‘}iom5 Cwlma?)
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Convex optimization problems (cont'd)

e We require this stronger definition because otherwise many abstract and
complex optimization problems can be formulated as optimization
problems over a convex set. (Think, e.g., of the set of nonnegative
polynomials.) The stronger definition is much closer to what we can
actually solve efficiently.

e The software CVX that we'll be using ONLY accepts convex optimization
problems defined as above.

e Beware that [CZ13] uses the weaker and more abstract definition for a

convex optimization problem (i.e., the definition that simply asks () to be
a convex set.)

Acceptable constraints in CVX:
e Convex < Concave
e Affine == Affine

This is really the same as:
e Convex<0

o Affine ==

Why?
(Hint: Sum of two convex functions is convex, and sums and differences of
affine functions are affine. )
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e Further reading for this lecture can include the first few pages of Chapters
2,3,4 of [BV04]. Your [CZ13] book defines convex sets in Section 4.3. Convex
optimization appears in Chapter 22. The relevant sections are 22.1-22.3.

- [BV04] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.
http://stanford.edu/~boyd/cvxbook/

- [CZ13] E.K.P. Chong and S.H. Zak. An Introduction to
Optimization. Fourth edition. Wiley, 2013.
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