
Instructor: 
Amir Ali Ahmadi

Convex sets○

Convex functions○

Convex optimization problems○

Why convex optimization? Why so early in the course?○

Convex optimization•
This lecture:

Recall the general form of our optimization problems:

                                           

                                                                   
                                                    s.t.      

In the last lecture, we focused on unconstrained optimization:      •
We saw the definitions of local and global optimality, as well as first and 
second order optimality conditions.

•

In this lecture, we consider a very important special case of constrained 
optimization problems known as "convex optimization problems".

•

 will be a "convex function".○

 will be a "convex set".○

These notions are defined formally in this lecture.○

For these problems,•

Convex optimization problems are pretty much the broadest class of 
optimization problems that we know how to solve efficiently.

○

e.g., a local minimum is automatically a global minimum.

They have nice geometric properties;○

Numerous important optimization problems in engineering, 
operations research, machine learning, etc. are convex.

○

You should take advantage of this!

There is available software that can take (a large subset of) convex 
problems written in very high-level language and solve it.

○

Convex optimization is one of the biggest success stories of modern 
theory of optimization.

○

Roughly speaking, the high-level message is this:•
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Convex sets

Definition. A set     is convex, if for all       the line segment 
connecting  and   is also in    In other words,

                                                       

A point of the form          ,        is called a convex combination
of   and    

•

Note that when     we are at    when     we are at   for 
intermediate values of   we are on the line segment connecting  and   

•

Convex:

Not convex:

Illustration of the concept of 
a convex combination:
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Convex sets & Midpoint Convexity

Midpoint convexity is a notion that is equivalent to convexity in most practical 
settings, but it is a little bit cleaner to work with.

Definition. A set     is midpoint convex, if for all       the midpoint 
between  and   is also in    In other words,

                                         
 

 
    

 

 
       

Obviously, convex sets are midpoint convex.•

e.g., a closed midpoint convex sets is convex.○

What is an example of a midpoint convex set that is not convex?
(The set of all rational points in       )

○

Under mild conditions, midpoint convex sets are convex•

The nonconvex sets that we had are also not midpoint convex (why)?:
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Common convex sets in optimization

Hyperplanes:                            •

Halfspaces:                           •

Euclidean balls:                                   2-norm)•

Ellipsoids:          
                             )•

(Prove convexity in each case.)

( here is an    symmetric matrix)

Proof hint: Wait until you see convex functions 
and quasiconvex functions. Observe that 
ellipsoids are sublevel sets of convex quadratic 
functions.
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Fancier convex sets

Many fundamental objects in mathematics have surprising convexity 
properties.

The set of (symmetric) positive semidefinite matrices:
  
                 

•

The set of nonnegative polynomials in  variables and of degree   •
(A polynomial          ) is nonnegative, if               

Image credit: [BV04]

For example, prove that the following two sets are convex.

e.g.,         
  
       

e.g.,              
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Intersections of convex sets

Easy to see that intersection of two convex sets is convex:•
                     convex,   convex       convex.

Proof:

Obviously, the union may not be convex:•

Polyhedra

Ubiquitous in optimization theory.○

Feasible sets of "linear programs" (an upcoming subject).○

A polyhedron is the solution set of finitely many linear inequalities.•

Such sets are written in the form:•
                                                                      
where  is an    matrix, and  is an     vector.

These sets are convex: intersection of halfspaces   
      

where   
 is the  -th row of   

•

e.g.,    
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Convex functions

Definition. A function       is convex if its domain is a convex set and for 
all  , in its domain, and all          we have

                                                          

In words: take any two points    ;  evaluated at any convex combination 
should be no larger than the same convex combination of     and      

•

If   
 

 
   interpretation is even easier: take any two points    ;  

evaluated at the midpoint should be no larger than the average of     
and      

•

Geometrically, the line segment connecting         to         sits 
above the graph of   

•

(     )
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Concave, if              
                             

•

Strictly convex, if                  
                                                         

•

Strictly concave, if                  
                                                         

•

Definition. A function       is

Note:  is concave if and only if   is convex. Similarly,  is 
strictly concave if and only if   is strictly convex.

The only functions that are  both convex and concave are affine functions; i.e., 
functions of the form:
                      

convex
(and strictly convex)

concave
(and strictly 
concave)

neither convex 
nor concave

both convex and 
concave (but not 
strictly)

Examples of univariate convex functions (     ):

   •
     •
  (defined on     )     or     •
   (defined on     )       •
         •
       (defined on     )•

Let's see some examples of convex functions (selection from [BV04]; see this 
reference for many more examples).

Try to plot the functions above and convince yourself of convexity visually.•
Can you formally verify that these functions are convex?•
We will soon see some characterizations of convex functions that make the task 
of verifying convexity a bit easier.

•
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Examples of convex functions (      )

Affine functions:              (for any           •

(convex, but not strictly convex; also concave)

Some quadratic functions:•

               

Convex if and only if     ○

Strictly convex if and only if     ○

Concave iff     Strictly concave iff     ○

Proofs are easy from the second order 
characterization of convexity (coming up).

○

                  a.
                b.
                      c.

Any norm: meaning, any function  satisfying:•

     
 

    
 

    •

     
 
       

 

 

   

 

 
 
  

    •

     
 

      
      

     •

Examples: 
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Midpoint convex functions

Same idea as what we saw for midpoint convex sets.

Obviously, convex functions are midpoint convex.•
Continuous, midpoint convex functions are convex.•

Definition. A function       is midpoint convex if its domain is a convex 
set and for all  , in its domain, we have

                              
   

 
       

 

 
       

 

 
        

Convexity = Convexity along all lines

Theorem. A function       is convex if and only if the function        
given by             is convex (as a univariate function), for all  in 
domain of  and all       (The domain of  here is all  for which     is 
in the domain of     

The notion of convexity is defined based on line segments.○

This should be intuitive geometrically:•

The theorem simplifies many basic proofs in convex analysis.•
But it does not usually make verification of convexity that much easier; 
the condition needs to hold for all lines (and we have infinitely many).

•

Many of the algorithms we will see in future lectures work by iteratively 
minimizing a function over lines. It's useful to remember that the 
restriction of a convex function to a line remains convex. Here is a proof:

•
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Epigraph

We will see a couple; via epigraphs, and sublevel sets.•
Is there a connection between convex sets and convex functions?

Definition. The epigraph       of a function       is a subset of     

defined as
                                                                 

Theorem. A function         is convex if and only if its epigraph is convex 
(as a set).
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Convexity of sublevel sets

Definition. The  -sublevel set of a function       is the set
                                                        

Several sublevel 
sets (for different 
values of    

Theorem. If a function         is convex, then all its sublevel sets are 
convex sets.

Converse not true.•
A function whose sublevel sets are 
all convex is called quasiconvex.

•

Quasiconvex but not convex functions
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Convex optimization problems

A convex optimization problem is an optimization problem of the form

                                           

                                            
                                s.t.                   
                                                                   

where       
   are convex functions and     

   are affine functions.

Observe that for a convex optimization problem  is a convex set 
(why?)

○

Consider for example,               Then  is a convex set, 
but minimizing a convex function over  is not a convex 
optimization problem per our definition.



However, the same set can be represented as              
and then this would be a convex optimization problem with our 
definition.



But the converse is not true:○

Let  denote the feasible set:                           •

Here is another example of a convex feasible set that fails our definition of a 
convex optimization problem:

•
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Convex optimization problems (cont'd)

We require this stronger definition because otherwise many abstract and 
complex optimization problems can be formulated as optimization 
problems over a convex set. (Think, e.g., of the set of nonnegative 
polynomials.) The stronger definition is much closer to what we can 
actually solve efficiently. 

•

The software CVX that we'll be using ONLY accepts convex optimization 
problems defined as above.

•

Beware that [CZ13] uses the weaker and more abstract definition for a 
convex optimization problem (i.e., the definition that simply asks  to be 
a convex set.)

•

Acceptable constraints in CVX:

Convex  Concave•
Affine   Affine•

This is really the same as:

Convex  0•
Affine   0•

Why? 
(Hint: Sum of two convex functions is convex, and sums and differences of 
affine functions are affine. )
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Further reading for this lecture can include the first few pages of Chapters 
2,3,4 of [BV04]. Your [CZ13] book defines convex sets in Section 4.3. Convex 
optimization appears in Chapter 22. The relevant sections are 22.1-22.3. 

•

Notes:
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