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UNIVERSITY

Instructor:
Amir Ali Ahmadi

This lecture:

Gradient descent methods
Choosing the descent direction
Choosing the step size
Convergence

Convergence rate

Let's recall our unconstrained optimization problem:

m}icn.f(x), (f:R™ - R)

Where we stand so far:

Learned about some structural properties of local optimal solutions (first
and second order conditions for optimality).

Learned that for convex problems, local optima are automatically global.
But how to find a local optimum?

How to even find a stationary point (i.e., a point where the gradient
vanishes)? Recall that this would suffice for global optimality if f is
convex.

We now begin to see some algorithms for this purpose, starting with
gradient descent algorithms.

These will be iterative algorithms: start at a point, jump to a new point
that hopefully has a lower objective value and continue.

Our presentation uses references [Bert03], [Bert09], [Tit13], [CZ13].

General form of the iterations:

Xg+1 = Xp + Qpdy
k € Z,: index of time (iteration number)

X € R™: Current point d; € R™: Direction to move along at iteration k

Xr+1 € R™: Next point oy € R, : Step size at iteration k

Goal is to make the sequence {f (x;)} decrease as much as possible.

e How to choose d;,? How to choose a;,?
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Gradient methods

e Throughout this lecture, we assume that f is at least C* (continuously
differentiable).

e Gradient methods: the direction d; to move along at step k is chosen
"based on information from" Vf (x;,).

e Why is Vf(x;) a natural vector to look at? Lemmas 1 and 2 below (proved
on the next page) provide two reasons.

Lemma 1: Consider yourself sitting at a point x € R" and looking (locally) at
the value of the function f in all directions around you. The direction with the
maximum rate of decrease is along —Vf (x).

Remark: When we speak of direction, the magnitude of the vector does not

matter; e.g,, V£ (x), 5V (x), o | /&)

, all are in the same direction.
20 "|IVF(|

Definition: For a given point x € R", a direction d € R" is called a descent
direction, if there exists @ > 0 (a € R) such that
fx+ad) < f(x), Vace(0,a).

Interpretation: There is a small enough (but nonzero) amount that you can
move in direction d and be guaranteed to decrease the function value.

Lemma 2: Consider a point x € R™. Any direction d satisfying
(d,Vf(x)) <0
is a descent direction. (In particular, —Vf (x) is a descent direction.)
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e Red: direction of steepest
descent

e Descent direction d would
have been better
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Remark: The condition (d, Vf(x) ) < 0 in Lemma 2 geometrically means that
the vectors d and Vf (x) make an angle of more than 90 degrees (on the plane
that contains them).

Why? (d,Vf(x) ) = |Id| - [IVf ()| cos()

cos ©

S e
'}’90
rad

v/

Proof of Lemma 1.
Consider a point x, a direction d, and the univariate function

9(@) = f (x+ap5).

The rate of change of f at x in direction d is given by g'(0), which by the chain
rule equals

T (V).

By the Cauchy-Schwarz inequality (see, e.g., Theorem 2.3 of [CZ13] for a
proof), We have:

g NGO 1] < 27 (Vf (), d) < - 9F @) - 1]

which after simplifying gives

IV @] < 5 VG0, ) < [IVF @

So the rate of change in any direction cannot be larger than ||Vf(x) | |, or

smaller than —||Vf(x)||. However, if we take d = Vf(x), the right inequality is
achieved:

e VGV ) = s I @I = 19 GOl

Similarly, if we take d = —Vf(x), then the left inequality is achieved.

4 X):= F(x4xd)
Proof of Lemma 2. fy 4 («) = YL+ 7’(o)o<+ o («)
By Taylor's theorem, we have

flx+ad) = f(x) +aVf(x)Td + o(a).

Since limg_, l—o—(o—()—l = 0, there exists @ > 0 such that

2Ol < |VFTd, Vae (0,a).

This, together with our assumptlon that Vf(x)Td < 0, implies that Va € (0, @)
we must have:

fx+ad)—f(x)<O.

Hence, d is a descent direction.
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Lemma 3: Consider any positive definite matrix B. For any point
x, with Vf(x) # 0, the direction —BVf (x) is a descent direction.

Proof. We have (—BVf (x),Vf(x)) = —Vf(x)TBVf(x) < 0, by the assumption
that B is positive definite.

This suggests a general paradigm for our descent algorithms:

Xk+1 — X — (XkBka(xk), (with B, > 0,Vk).

Common choices of descent direction:
e SteepestDescent: B, =1,Vk.
Simplest descent direction but not always the fastest.

e Newton Direction: B, = (V2f(x;))™! (assuming Hessian positive
definite).

More expensive, but can have much faster convergence.

« Diagonally Scaled Steepest Descent: B; = diag(d, x, ..., dnx ), dix > 0.

2
] f(xk)) ; i.e., diagonally approximate

(0x;)?

For example, can take d; = (

Newton.
 Modified Newton Direction: B, = (V%f (xo))_l, vk
Compute Newton direction only at the beginning, or once every M steps.

e Quasi-Newton Directions: Chap. 11 of [CZ13].

Tradeoffs generally problem dependent.
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Common choices of the step size a;.

Back to the general form of our iterative algorithm:

Xp+1 = Xp + apdy

e Constantstepsize: «a, =s,Vk (s> 0)

o Simplest rule to implement, but may not converge if s too large; may
be too slow if s too small.

NP . 1
e Diminishing step size: o, = 0, Y7, a; = . (e.g, ay = ;)

o Descent not guaranteed at each step; only later when a; becomes
small.

o Yr-,a, = oo imposed to guarantee progress does not become too
slow.

o Good theoretical guarantees, but unless the right sequence is chosen,
can also be a slow method.

e Minimization rule (exact line search): «a;, = argmings, f(x; + a,dy)
o A minimization problem itself, but an easier one (one dimensional).
o Can use the line search methods that we learned in the previous
lecture.
o No need to be very precise at each step.

o If fconvex, the one dimensional minimization problem also convex
(why?).

 Limited minimization: oy = argmingepo s f (X + o dy)

o Previous comments apply.
o Tries not to step too far.

e Successive step size reduction: well-known examples are Armijo rule
and Goldstein rule (see, e.g., Section 7.8 of [CZ13]). We will cover Armijo
in the next lecture.

o Try to ensure enough decrease in line search without spending time
to solve it to optimality.

Tradeoffs generally problem dependent.
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An illustration of a single step of the
minimization rule (aka exact line
search) for choosing the step size.

\

Image credit: [CZ13] ' ) + gt

Stopping criteria.

* Once we have a rule for choosing the search direction and the step size,
we are good to go for running the algorithm.
e Typically the initial point x,, is picked randomly, or if we have a guess for
the location of local minima, we pick x, close to them.
e But when to stop the algorithm?
e Some common choices (e>0 is a small prescribed threshold):
o [IVf)I| <e
» Note: if we have Vf(x;) = 0, our iterates stop moving. We have
found a point satisfying the first order necessary condition for
optimality. This is what we are aiming for.

O |fCkea) = fxid| <€
* Improvements in function value are saturating.
© ||xk+1 _xkll <€

= Movement between iterates has become small.

)~ FGI
max(L, [f ()1}

= A "relative” measure - removes dependence on the scale of f.
* The max is taken to avoid dividing by small numbers.

||xk+1 - xk||
max{l, ||xk||}
» Same comments apply.

<€
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Steepest descent with exact line search for
quadratic functions.

Goal mia. £ K Ax —b'y , aswme R 4o,

— l
—

o lf @A hoas a negq'h'vg e(j}ev\v«lve, Fr= —o CWL“},?)
0 1f O\,\[a -:_) MV\I\‘V’KC gvlolao\l Sol(A"’iO*\ (ka»?)

Kig) = X = X VF (ny)
Goql . CL\DOSC o(k 7,0 +o Mfﬂ,‘m"}{ 7e (%K’fl)'

Let }(o():: P(Xk_,:x U?C(Xk))

L (M= % TF (Ke)) R (Mx~<VF () -6 (M= <7 (R )
° ?(Gq '3 7/“0“1‘,“-*'.( and Convex (wh37)

‘;L(oq: Q0(2+01°<—+C — A% min ;(o(]: ""Z/Q\C1

P 1y QUE () = (5 1] @) 7F ) = 9FbugFin

wheve a= L
2

i - Vf(%k) 7+ (k)
Vf(")(k) @] 7F (%)

=

OVQVQH P[\?okfﬂmq; 7()‘_”: Ay — ( V{@(K]V% ak)) Vﬂcmk)
VAT ()@ v £ 0ly)

wheve V?L(')t,():. Q)(K -,
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Example.

min. f(x) = 5x% + x5 + 4x,x, — 6x; — 4x, + 15

Any stationary point must be the unique global
minimizer (why?)

Let's try the steepest descent method:

di = —Vf(xx)
ay: get from exact line search

%o = (0,10)7
Stopping criterion: ||Vf(x)|| < 107

Output:

K

1.000000000000000
2.000000000000000
3.000000000000000
4.000000000000000
5.000000000000000
&.000000000000000
7.000000000000000
2.000000000000000
9.000000000000000
10.000000000000000
11.000000000000000
12.000000000000000
13.000000000000000
14.000000000000000
15.000000000000000
16.000000000000000
17.000000000000000
18.000000000000000
19.000000000000000
20.000000000000000
21.000000000000000
22.000000000000000
23.000000000000000
24.000000000000000
25.000000000000000

0
—2.923039454456893
-0.933785454681702
-1.127333183106014
-0.995615633988288
—1.008431308823290
-0.98970963811338026
-1.000558275280174
—-0.999980777334673
—1.000036965943830
—0.989998727179956
-1.000002447683163
-1.000003093085335
—1.000001867725151
-1.000002329669088
-1.000001406744733
-1.000001754674499
—1.000001059540664
-1.000001321596548
-1.000001526073883
-1.000001253482323
—1.000001368725976
-1.000001123690238
-1.000001213838623

Zk

10.000000000000000
8.624452021432051
4.3972872719097398
4.306205987945416
4.026306196070238
4.020275290265531
4.001741852811849
4.001342519126133
4.000115335991923
4.000088894293497
4.000007636920265
4.000005886095226
4.000007257574842
4.000005876023959
4.000005466304932
4.000004425739920
4.000004117145219
4.000003333406057
4.000003100976799
4.000003331517876
4.000003252795159
4.000002891887509
4.000002856182403
4.000002232893388

000000918445978 4.000002271048705

[

14

0000000000000 0000000O00NO R

4000

2000

10

10
I

v F1y)

.000000000000000
.732586458840725
.251294540822171
.048507879278480
.149068444398068
.003211927170778
.009870499267134
.000212676297206
.000653570620962
.000014082264316
.000043275881499
.000000932450728
.000001900553979
.000004826844329
.000001431470952
.000003635512357
.000001078164111
.000002738217589
.000000812058286
.000001934667424
.000000476257405
.000002119709727
.000000187827231
.000003266812726
.000000100264955

-
DO 0000000000000 00000R P M

o o

.000000000000000
556746225036530
059432725092788
103079243466774
070149856187323
006825345237901
004644940831593
000451937131571
000307562645155
000029924811672
000020365120705
000001981457800
000002142808345
000004281147315
000001613933592
000003224500911
000001215592444
000002428649458
000000915567405
000000558740181
000001491621026
000000308871113
000001217603853
.000000413567736
.000000868313499
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.576588456111871
720506242023632
488116719234297
113922538532891
164749517262910
007543329090456
010908814376984
000489478105912
000722322183848
000033072715672
000047828234975
0000021898394831
000002864215954
000006451E871706
000002157287817
000004859460487
000001624839327
000003660078381
000001223806493
000002013734995
000001565807907
000002142094930
000001232005768
.000003292886828

OCOODODOODO0O0O0O0DODDOOOOO O MR

0.000000874083174

A
<e

=]

0o ooooo

o ooooo

oMo Mo NSNS N

0B5971748660497
T15384615384604

.0B5971748660437

T15384615384754
0B5971748660497
T15384615384132

.0B5971748660486

T715384615432194
0B85971748660553
T15384615356879
0B85971748657113
692156863782812
644738427673033
095703090047471
644738430763048
0957030839988433
644738428822084
095703090024235
251801315258460
140893244247662
241956665294677
115598723360049
511898030938667
09225893107584%
000000000100000

£ ()

75.000000000000000
14.303945445689237
10.284983790761091
10.018870072128331
10.001248473246101
10.000082733302879
10.000005478148033
10.000000362733084
10.000000024018206
10.000000001590355
10.000000000105302
10.000000000006872
10.000000000010715
10.000000000008070
10.000000000006079
10.000000000004576
10.000000000003446
10.000000000002597
10.000000000001959
10.000000000002405
10.000000000002125
10.000000000001897
10.000000000001631
10.000000000001528

)
f*)




Theorem. ("the zig-zag theorem") Let {x; } be the sequence
generated by the steepest descent algorithm. Then, for all k,
Xi+1 — X is orthogonal to xj ., — Xp41.

) —— Cp>C1>C2>C3

Image credit: [CZ13]

Proof. Quy ".ferorfiom_s Yeaql'.
Ay = Xk — Xk Vf(lk)

ks = 7(“' ﬂo(ku V7C(%"+') '

/HQM(.e,
< X’(ﬂ— L Xkﬂ— Y, )= D(k°<K+,<VP CM\Za (xkﬂ) >.
Re call That O(K mnimiZes CIOK (x)= ’F(“k—‘*v;(’xk)).

= %%—("‘k)“- @

but b} Cha rule .
_ilf-&- (D(k) - <_V’F(Xk),V‘)C (’Kk—~°<kW‘F(')(x))7
dex
- < V4 ‘F(”'in))v‘F(%Kﬂ)?. @

®+®+@—;7 L=y Mgy~ A 72=0-
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Convergence

The descent algorithms discussed so far typically come with proofs of
convergence to a stationary point (i.e., a point where the gradient of the
objective function is zero). We state a couple such theorems here; the
proofs are a bit tedious, and [ won't require you to know them. But those
interested can look some of these proofs up in [CZ13].

Theorem. (See [Bert03].) Consider the sequence {x;} generated
by any descent algorithm with

di = =By Vf(xx),
such that eigenvalues of B, are larger than some m > 0, for all &,
and the step size is chosen according to the minimization rule, or
the limited minimization rule, (or the Armijo rule).
Then, every limit point of {x; } is a stationary point.

Remark1: We say x € R" is a limit point of a sequence {x;.}, if there exists a
subsequence of {x } that converges to x.

Remark2: A stationary point may not be a local min! It may be a saddle point
or even a local max! But there is a result called the “capture theorem" (see
[Bert03]) which informally states that isolated local minima tend to attract
gradient methods.

Question to think about: How would you check if the point that you end up
with (assuming it is stationary) is actually a local minimum?

Theorem. (See [CZ13].) Consider a quadratic function
flx) = %xTQx + bTx + ¢, with Q > 0, and let x, be the
minimizer.

e For the steepest descent algorithm with exact line search, we
have x;, — x, starting from any x,. (This is called global
convergence.)

e For the steepest descent algorithm with a fixed step size, we
have global convergence if and only if the step size a

satisfies:
2

)]-max(Q) ’
where 4,,,,(Q) denotes the maximum eigenvalue of Q.

0<<a<
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Lyapunov functions and proofs of convergence

e Avery powerful technique for proving convergence of
iterative algorithms is based on the idea of a Lyapunov
function.

e This is a technique from the theory of dynamical systems
and control. Roughly speaking, it is used to decide
whether all trajectories of a dynamical system converge
to a given point.

e The idea is due to the Russian mathematician, Aleksandr Lyapunov
Lyapunov. (1857-1918)

e We will typically try to prove that all trajectories of a dynamical system go to
the origin; i.e.,, we want to show that for all x, € R™,x;, = 0,as k — oo.
e In control theory, the vector x;, can denote the deviation of an airplane
wing angles from its stable flying position at time k.
e When proving convergence of iterative algorithms, x;, can denote the
deviation of the k-th point that our algorithm produces from the optimal
solution x,. (A better notation is perhaps ey; for error at step k.)

Theorem. ("Lyapunov's global stability theorem in discrete time")

Consider a Jj,hmnicaz 3653‘@“
%K+l :j (%)
h o]

where 9,:/?——7@ 'S & ConTinyous nap snﬁsf}in} }(o):».
If' theve exists a  Continvous Fun ction V:IQV\——J;Q (Ca”CJ A“Z}afl)umw funcfiun')
thet satsfies: o V(o)zo, V(W) 70 V?L:[:o/ (PoS[?“,'vi‘f;)

s V@) e as “x“—)w, (vadial unbom’cdne:))

. V(?(’n)) <\/(’)L) V?L;L‘O, (57Lrn'c;]’ Jcc»'eme)

V\
Th&h, V%oe@ we have ’)(K_ao ag K_),oo.
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https://en.wikipedia.org/wiki/Aleksandr_Lyapunov

Proof.

qI .
/he decreafe aSSumPf/oy, of 7he Fheyrem /'mpll'([ ?hel The /wncﬁon \/ yy,omo'foan/{}

de creqser a{/onj all ‘,’Ya]e(;f‘oritj of ur l} namical Jifh’—wl:

\/(%k) N y

K

Take Ly Ao  and cGomsider the SCZuﬁhcc {V(')tk)} of 7he Fanction

\/ tvaluatel on the %rqﬂwtar; 5,%,%;;; at %, -

Sinee {VOWY 15 posdive and lower bounded, it converper 1o

Some Cze .

1f czo, V() — o imphes That Wy—se (beae Vs only gero af 2ero)
and we wonld be dJone.

We claim 7hat we camot have cyo. Tndeed [f cyo, Thew the Fragetory
s%arﬁu} af No onld Frever be Traver Sngin Phe Compact set

S .- {,l/ V() >/<;7J n{x /V(%) V().

tV(WFV(xo)}
’é moact bye V is radudl
M (\l('k) = Qj f . ’ a ’ Y(;M boi ded

o{d’ § .= Mn lV(j(u))—V(K)(' Smce The obd’ecflifc 'S (onFimvouy and

A¢S
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PO‘S).%/-\/& le SJ‘nCQ S "S (/Dhﬁpn(j) 561\‘51} d,,J i POS,.}I‘\/{,_
Thaefort , 1n tach iteation V(i) deceates é; ol Jeast %,

Thif7 however, /'M/Dliel Hoat {V(?l,()}-—)—oo which Controdicts hoeac}47l/i/)'7} of V
0

e Asan application, we show how Lyapunov's theorem can be used to prove
that our steepest descent algorithm with exact line search is globally
convergent.

Theorem. /¢t f(x) :%ﬂax ", with Qps. Thew, Y16 €y The sterates %y
0{' f’hﬁ Sfec/)ejf o/escenf ql?orfﬂ’llh conver}c To Hie uni¢v«e ?,loba’

M{nfmUM ')t* Of 7E

Proof. [ ef € = A n! (enmor at step X).
Consider the Jogpunoy Functios
V(e) = fleex™)- flar).
Then, V(o) = F(n*)~F&")=e,
Vie)y o VYeze, (We a*is he e global i)
V()= F (O, ~107) -4 @) < F (R 1)-F ()
=V (e), VY e
(Aecall our slporithm had a stricl decrease ?qm.n‘ee).

j» upUnoyJ
:2};’_[)‘:@ VQD) Qk,/a o Qy k,-aoo::7 'v')(,) ')(k___,r)(“ as K- o>
"'L\Q()Y?_M D
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Rates of convergence

* Once we know an iterative algorithm converges, the next question is how
fast?

o IfIf(x) — )~ ——

log(log(k))’
eventually. But to see it go even below 0.1, you need to write a letter to
your grandson (to tell him to write a letter to his grandson, etc.)

e Let us formalize this.

then sure, this difference will go to zero

Definition (see [Tit13]). Let {x;} converge to x,. We say the convergence is of
order p(= 1) and with factor y (> 0), if 3k, such that Vk > k,,

|1 — x| < v]lo — x|

Make sure the following comments make sense:

e The larger the power p, the faster the convergence.

e For the same p, the smaller vy, the faster the convergence.

o If {x;} converges with order p, it also converges with order p’ for any
p' <p.

o If {x;} converges with order p and factor y, it also converges with order p’
and factor y', forany y’ > y.

e So we typically look for the largest p and the smallest y for which the
inequality holds.

Some more terminology:

e Ifp =1,andy < 1, we say convegence is linear.

e Ifp =1,and y = 1, we say convegence is sublinear.

e Ifp > 1, we say that convergence is superlinear. (This is slightly stronger
than the usual definition of superlinear convergence, but we will go with
it.)

e Ifp = 2, we say that convergence is quadratic.

- Why called linear convergence?
For k large enough, we have ||x;4; — x.| . So
10g||xk+l- — x,|| < ilogy +log||x;, — x.|| . Hence, — log||xk+i — x,.||, whichisa
measure of the number of correct significant digits in x; , grows linearly
with i.

< vl - x.|

__,eog'bo_l: | ) _,oaglva.ol—_- 2' _jp}l a.o°l = 3, 2"‘:,

0
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Examples:

o |lxp — x| = % sublinear convergence.

. ||xk —x.|| ®a* 0<a<1 linear convergence.

. ||xk — x| = azk, 0 <a<1 quadratic convergence.
(Verify!)

Quadratic convergence is super fast! Number of correct
significant digit doubles in each iteration (why?).

Convergence rate of steepest descent for quadratic functions

Theorem. Consider a quadratic function f(x) = %xTQx +bTx + ¢, withQ > 0.

Let m and M respectively denote the smallest and largest eigenvalue of Q. Then
the sequence {f (x;)} generated by the steepest descent algorithm with exact
line search converges to the unique global minimum of f, where the

2
- . M-
convergence is linear (order 1), and with factor (ﬁ) .

°* K= 7_1\;11 is called the condition number of the matrix Q. (Note k > 1.)

o Very important quantity in numerical analysis

_ 2 _a\2
M+m K+1

e We want k small for fast convergence (close to one).

From [Bert09]: ¥ M — 2 # of iterations needed
( ) to reduce optimality
M+ m gap by 0.1
1.1 0.0023 1
3 0.25 2
10 0.67 6
100 0.96 58
200 0.98 116
400 0.99 231
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Analysis first done by Kantorovich
(winner of 1975 Nobel Prize in

Economics ).

Original CIA file on
Kantorovich, seized from
the former US Embassy
in Tehran. (source: Wiki)

CONFIDENTIAL

USSR Leonid Vital'yevich KANTOROVICH

Head, Problems Laboralory of
Economic-Mathematical Methods
and Operations Research,
Institute of Management of the
National Economy

An internationally recognized cre-
ative genius in the fields of mathemat-
ics and the application of electronic
computers to economic affairs, Acade-
mician Leonid Kantorovich (pro-
nounced kahntuhROHvich) has
worked at the lastitute of Manage
ment of the National Economy since
1971. He has been involved in ad-
vanced mathematical research since (e7)
the age of 15; in 1839 he invented
linear programming, one of the most significant contributions to economic
management in the twentieth century. Kantorovich has spent most of his
adult life battling to win acceptance for his revolutionary concept from Soviet
academic and economic bureaucracies; the value of linear programming to
Soviet economic  practices was not really recognized by his country's
authorities until 1965, when Kantorovich was awarded a Lenin Prize for his
work International recognition came in October 1975, when the mathemati-
cian was awarded the Nobel Prize for Economics jointly with T. C
Koopmans, a Dutch-born American economist who discovered the same
concept independently a few years after Kantorovich.

In addition to his mathematical research, Kantorovich has been directly
involved in developing improved designs for high-speed digital computers, an
activity apparently motivated by the Soviet Union's need for improved
computers in solving large economic planning problems.

The Institute of Management of the National Economy

The Institute of Management of the National Economy was established
to train high-level economic and industrial administrators in modern methods
of management, production organization and the use of economic-
mathematical methods and computers in planning. When the institute
opened in early 1971, Premier Aleksey Kosygin and Party Secretary Andrey
Kirilenko attended the ceremonies, thus suggesting the importance that the
Soviet Covernment and Party attach to the application of modemn
management techniques to Soviet industrial administration and economic

planning
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Large k:

Image credit: [Bert09]

e What if the function f we are minimizing is not quadratic?
e Denote the optimal solution by x,
e Locally the function is well approximated by a quadratic:

%XTVZ f(x,)x (plus linear and constant terms)

e Hence x(V?f(x,)) (i.e., the condition number of the Hessian at x,)
dictates convergence rate

We will see in future lectures how we can achieve a better than linear rate of
convergence by using the Newton method.
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e The content on these last two pages has been added in response to a
question raised by a student on Piazza in Fall 2015.

O(HOW To 7C4«,,J ﬁve orc/er and Factor of Conver;,ence?

Re call 1he dJefution : {Zk} conve;7a 7o Ay with Srder P and  Factor ¥ if

Ik sveh Hal VKoK we have
“Xuf 7(J/g g “ Xg —7(4}/r,

o We wan? The 1017551. p for whicth 7he above fh?mlﬁ’} holds for kK /076

0 For That p, we want the smyllest S 1hat makes e ;'ne;ua//{; he ld.

0 /HeVe 5 a Simple wa7 to find P and ¥
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o Hure ave three exam ples.
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The relevant chapter of [CZ13] for this lecture is Chapter 8.
You can have a look at some examples that are worked out
there in detail, but if you understand the notes well, that
should be enough.

[Bert09] D. Bertsimas. Lecture notes on optimization
methods (6.255). MIT OpenCourseWare, 2009.

[Bert03] D.P. Bertsekas. Nonlinear Programming.
Second edition. Athena Scientific, 2003.

[CZ13] E.K.P. Chong and S.H. Zak. An Introduction to
Optimization. Fourth edition. Wiley, 2013.

[Tit13] A.L. Tits. Lecture notes on optimal control. University
of Maryland, 2013.

Lec8 Paae 20



