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Instructor: 
Amir Ali Ahmadi

Learned about some structural properties of local optimal solutions (first 
and second order conditions for optimality).

•

Learned that for convex problems, local optima are automatically global.•
But how to find a local optimum?•
How to even find a stationary point (i.e., a point where the gradient 
vanishes)? Recall that this would suffice for global optimality if  is 
convex.

•

We now begin to see some algorithms for this purpose, starting with 
gradient descent algorithms.

•

These will be iterative algorithms: start at a point, jump to a new point 
that hopefully has a lower objective value and continue. 

•

Our presentation uses references [Bert03],  [Bert09], [Tit13], [CZ13].•

Where we stand so far:

Let's recall our unconstrained optimization problem:

      index of time (iteration number)

     : Current point

         Next point

     : Direction to move along at iteration  

       Step size at iteration  

    
 

                

            

General form of the iterations:

How to choose   ? How to choose   ?•

Goal is to make the sequence          decrease as much as possible.
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Gradient methods

Throughout this lecture, we assume that  is at least   (continuously 
differentiable).

•

Gradient methods: the direction   to move along at step  is chosen 
"based on information from"        

•

Why is       a natural vector to look at? Lemmas 1 and 2 below (proved 
on the next page) provide two reasons.

•

Lemma 1: Consider yourself sitting at a point     and looking (locally) at 
the value of the function  in all directions around you. The direction with the 
maximum rate of decrease is along        

Lemma 2: Consider a point     . Any direction  satisfying 
                                                                    
is  a descent direction. (In particular,       is a descent direction.)       

Definition: For a given point      a direction     is called a descent 
direction, if there exists            such that
                                                                                  
                                              

Remark: When we speak of direction, the magnitude of the vector does not 

matter; e.g.,              
     

  
     

     

         
       all are in the same direction.

Interpretation:  There is a small enough (but nonzero) amount that you can 
move in direction  and be guaranteed to decrease the function value.

Descent directions
at  

Red: direction of steepest 
descent

•

Descent direction  would 
have been better

•
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Remark: The condition             in Lemma 2 geometrically means that 
the vectors  and      make an angle of more than 90 degrees (on the plane 
that contains them).

Why?                                   

Proof of Lemma 1.
Consider a point  , a direction  , and the univariate function 

                                                                     
 

     
     

The rate of change of  at  in direction  is given by       which by the chain 
rule equals

                                                              
 

     
             

By the Cauchy-Schwarz inequality (see, e.g., Theorem 2.3 of [CZ13] for a 
proof), we have: 

              
 

     
                    

 

     
             

 

     
                    

 which after simplifying gives

                                              
 

     
                       

So the rate of change in any direction cannot be larger than             or 

smaller than            However, if we take         the right inequality is 
achieved:

Proof of Lemma 2.

By Taylor's theorem, we have 
                                                             

Since        
      

 
        there exists     such that

                                              
       

 
                         ).

This, together with our assumption that            implies that         ) 
we must have:
                                                           
Hence,  is a descent direction.

                                      
 

         
                    

 

         
                

 
           

Similarly, if we take          then the left inequality is achieved.
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Lemma 3: Consider any positive definite matrix  . For any point 
  with        , the direction        is a descent direction.                                              

Proof. We have                                   by the assumption 
that  is positive definite.

This suggests a general paradigm for our descent algorithms:

                         (with        ).

Common choices of descent direction:

Steepest Descent:             •

       Simplest descent direction but not always the fastest.

Newton Direction:                 
     (assuming Hessian positive 

definite).

More expensive, but can have much faster convergence.

•

Diagonally Scaled Steepest Descent:                               

For example, can take       
       

     
        

  

 i.e., diagonally approximate 

Newton.

•

Modified Newton Direction:                   
  

   •

Compute Newton direction only at the beginning, or once every M steps.

Quasi-Newton Directions:    Chap. 11 of [CZ13].•

Tradeoffs generally problem dependent.
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Common choices of the step size    

Back to the general form of our iterative algorithm:

            

Constant step size:                    •

Simplest rule to implement, but may not converge if  too large; may 
be too slow if  too small.

○

Diminishing step size:                 
      (e.g.,    

 

 
 )•

Descent not guaranteed at each step; only later when   becomes 
small.

○

      
    imposed to guarantee progress does not become too 

slow.
○

Good theoretical guarantees, but unless the right sequence is chosen, 
can also be a slow method.

○

A minimization problem itself, but an easier one (one dimensional).○

Can use the line search methods that we learned in the previous 
lecture.

○

No need to be very precise at each step.○

If  convex, the one dimensional minimization problem also convex 
(why?).

○

Minimization rule (exact line search):                          •

Limited minimization:                                 •

Previous comments apply.○

Tries not to step too far.○

Successive step size reduction:    well-known examples are Armijo rule 
and Goldstein rule (see, e.g., Section 7.8 of [CZ13]). We will cover Armijo 
in the next lecture.

•

Try to ensure enough decrease in line search without spending time 
to solve it to optimality.

○

Tradeoffs generally problem dependent.
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An illustration of a single step of the 
minimization rule (aka exact line 
search) for choosing the step size.

Image credit: [CZ13]

Stopping criteria.

Once we have a rule for choosing the search direction and the step size, 
we are good to go for running the algorithm.

•

Typically the initial point   is picked randomly, or if we have a guess for 
the location of local minima, we pick   close to them.

•

But when to stop the algorithm?•

Note: if we have         , our iterates stop moving. We have 
found a point satisfying the first order necessary condition for 
optimality. This is what we are aiming for.



           ○

Improvements in function value are saturating.

                 ○

Movement between iterates has become small.

             ○

A "relative" measure - removes dependence on the scale of   

The max is taken to avoid dividing by small numbers.

               

              
                 ○

Same comments apply.

           

             
              ○

Some common choices ( >0 is a small prescribed threshold):•
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Steepest descent with exact line search for 
quadratic functions.
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Example.
            

    
                   

Any stationary point must be the unique global 
minimizer (why?)

Let's try the steepest descent method:
          
    get from exact line search

          

Stopping criterion:               

Output:
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Theorem. ("the zig-zag theorem") Let     be the sequence 
generated by the steepest descent algorithm. Then, for all  , 
       is orthogonal to           

Proof.

Image credit: [CZ13]
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Convergence

For the steepest descent algorithm with exact line search, we 
have      starting from any    (This is called global 
convergence.)

•

For the steepest descent algorithm with a fixed step size, we 
have global convergence if and only if the step size  
satisfies:

                                              
 

       
       

where        denotes the maximum eigenvalue of   

•

Theorem. (See [CZ13].) Consider a quadratic function

     
 

 
             with      and let   be the 

minimizer.

The descent algorithms discussed so far typically come with proofs of 
convergence to a stationary point (i.e., a point where the gradient of the 
objective function is zero). We state a couple such theorems here; the 
proofs are a bit tedious, and I won't require you to know them. But those 
interested can look some of these proofs up in [CZ13]. 

Theorem. (See [Bert03].) Consider the sequence      generated 
by any descent algorithm with 
                                                                       
such that eigenvalues of   are larger than some     for all   
and the step size is chosen according to the minimization rule, or 
the limited minimization rule, (or the Armijo rule). 
Then, every limit point of     is a stationary point.

Remark1: We say     is a limit point of a sequence      if there exists a 
subsequence of     that converges to   

Remark2: A stationary point may not be a local min! It may be a saddle point 
or even a local max! But there is a result called the ``capture theorem'' (see 
[Bert03]) which informally states that isolated local minima tend to attract 
gradient methods.

Question to think about: How would you check if the point that you end up 
with (assuming it is stationary) is actually a local minimum?
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Lyapunov functions and proofs of convergence

A very powerful technique for proving convergence of 
iterative algorithms is based on the idea of a Lyapunov 
function. 

•

This is a technique from the theory of dynamical systems 
and control. Roughly speaking, it is used to decide 
whether all trajectories of a dynamical system converge 
to a given point.

•

The idea is due to the Russian mathematician, Aleksandr 
Lyapunov.

•

Theorem. ("Lyapunov's global stability theorem in discrete time")

Lyapunov
(1857-1918)

In control theory, the vector    can denote the deviation of an airplane 
wing angles from its stable flying position at time  .

•

When proving convergence of iterative algorithms,   can denote the 
deviation of the  -th point that our algorithm produces from the optimal 
solution     (A better notation is perhaps    for error at step   )

•

We will typically try to prove that all trajectories of a dynamical system go to 
the origin; i.e., we want to show that for all             as      

•
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Proof.
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Theorem. 

As an application, we show how Lyapunov's theorem can be used to prove 
that our steepest descent algorithm with exact line search is globally 
convergent.

•

Proof.
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Rates of convergence 

Once we know an iterative algorithm converges, the next question is how 
fast?

•

If               
 

           
           then sure, this difference will go to zero 

eventually. But to see it go even below 0.1, you need to write a letter to 
your grandson (to tell him to write a letter to his grandson, etc.)

•

Let us formalize this.•

Definition (see [Tit13]). Let     converge to    We say the convergence is of 
order       and with factor         if    such that       

                                                                          
 
 

The larger the power   the faster the convergence.•
For the same   the smaller   the faster the convergence.•
If     converges with order  , it also converges with order   for any 
     

•

If     converges with order  and factor  , it also converges with order   
and factor    for any       

•

So we typically look for the largest  and the smallest  for which the 
inequality holds.

•

Make sure the following comments make sense:

If     and    , we say convegence is linear.•
If     and    , we say convegence is sublinear.•
If    , we say that convergence is superlinear. (This is slightly stronger 
than the usual definition of superlinear convergence,  but we will go with 
it.)

•

If    , we say that convergence is quadratic.•

Some more terminology:

Why called linear convergence?-

For  large enough, we have                          So

                                   Hence,                 which is a 

measure of the number of correct significant digits in       grows linearly 
with   
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Examples:

          
 

 
       sublinear convergence.•

                        linear convergence.•

                         quadratic convergence.•

(Verify!)

Quadratic convergence is super fast! Number of correct 
significant digit doubles in each iteration (why?).

•

Convergence rate of steepest descent for quadratic functions

Theorem. Consider a quadratic function      
 

 
             with       

Let  and  respectively denote the smallest and largest eigenvalue of    Then 
the sequence        generated by the steepest descent algorithm with exact 
line search converges to the unique global minimum of  , where the 

convergence is linear (order 1), and with factor  
   

   
     

 
 

Very important quantity in numerical analysis○

  
 

 
  is called the condition number of the matrix   (Note      •

Note:  
   

   
     

 
  

   

   
    

 
•

We want  small for fast convergence (close to one).•

 
 
   

   
       

 # of iterations needed 
to reduce optimality 

gap by 0.1

1.1 0.0023 1

3 0.25 2

10 0.67 6

100 0.96 58

200 0.98 116

400 0.99 231

From [Bert09]:
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Original CIA file on 
Kantorovich, seized from 
the former US Embassy 
in Tehran. (source: Wiki)

Analysis first done by Kantorovich  
(winner of 1975 Nobel Prize in 
Economics ).
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Large   

Small   

Image credit: [Bert09]

Denote the optimal solution by   •
Locally the function is well approximated by a quadratic: 
 

 
           (plus linear and constant terms)

•

Hence            (i.e., the condition number of the Hessian at   ) 
dictates convergence rate

•

What if the function   we are minimizing is not quadratic?•

We will see in future lectures how we can achieve a better than linear rate of 
convergence by using the Newton method.
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The content on these last two pages has been added in response to a 
question raised by a student on Piazza in Fall 2015.

•
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Notes:

The relevant chapter of [CZ13] for this lecture is Chapter 8. 
You can have a look at some examples that are worked out 
there in detail, but if you understand the notes well, that 
should be enough.

•
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