
Name:

Princeton University

ORF 363/COS 323

Final Exam, Fall 2017

January 17, 2018

Instructor:

A.A. Ahmadi

AIs:

B. El Khadir, C. Dibek, G.

Hall, J. Zhang, J. Ye, S. Uysal
1. Please write out and sign the following pledge on top of the first page of your exam:

“I pledge my honor that I have not violated the Honor Code or the rules specified by the instructor

during this examination.”

2. Don’t forget to write your name on the exam. Make a copy of your solutions and keep it.

3. The exam is not to be discussed with anyone except possibly the professor and the TAs. You can only

ask clarification questions, and only as public (and preferably non-anonymous) questions on Piazza.

No emails.

4. You are allowed to consult the lecture notes, your own notes, the reference books of the course as

indicated on the syllabus, the problem sets and their solutions (yours and ours), the midterm and its

solutions (yours and ours), the practice midterm and final exams and their solutions, all Piazza posts,

but nothing else. You can only use the Internet in case you run into problems related to MATLAB

or CVX.

5. You are allowed to refer to facts proven in the notes or problem sets without reproving them.

6. For all problems involving MATLAB or CVX, show your code. The MATLAB output that you present

should come from your code.

7. Unless you have been granted an extension because of overlapping finals, the exam is to be turned in

on Friday (January 19, 2018) at 10 AM in the instructor’s office (Sherrerd 329). If you cannot make

it on Friday and decide to turn in your exam sooner, or if your deadline is different under the rules of

the exam, you have to drop your exam off in the ORF 363 box of the ORFE undergraduate lounge

(Sherrerd 123). If you do that, you need to write down the date and time on the first page of your

exam and sign it. You can also submit the exam electronically on Blackboard as a single PDF file.

8. Good luck!



Grading

Problem 1 25 pts

Problem 2 25 pts

Problem 3 25 pts

Problem 4 25 pts

TOTAL 100
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Problem 1: Minimizing the probability of cheating

At some universities like Princeton, professors have it easy. The students uphold such a high

standard of academic integrity that there is no reason to worry about complications around

cheating. This is sadly not the case at Cheatston University, where Professor Paranoid is

about to hold a take-home final exam.

Because he is worried about cheating, Professor Paranoid goes through the trouble of de-

signing two different sets of exam questions of equal difficulty level. He is now faced with

the task of deciding which students should get Exam A and which should get Exam B. To

make this decision, Professor Paranoid’s strategy is to make sure that to the extent possible,

students who are friends with each other get different exams.

More formally, suppose that Professor Paranoid has access to the “friendship network” of his

students; this is a graph G(V,E) with n students as nodes and an edge between two nodes if

and only if the two students are friends. If we denote the adjacency matrix1 of this graph by

A, then the optimization problem that Professor Paranoid wants to solve is the following:

f ∗ := max
x∈Rn

1

4

∑
i,j

Aij(1− xixj)

s.t. x2i = 1, i = 1, . . . , n.

(1)

(a) We say that a friendship is “cheat-free” if the two students involved in this friendship

get different exams. Argue why the optimal value f ∗ to problem (1) is equal to the maximum

possible number of cheat-free friendships. Show that the above problem is not a convex

optimization problem.

It turns out that problem (1) is NP-hard to solve. Nevertheless, you know from ORF 363 that

semidefinite programming is a powerful tool for approximately solving NP-hard problems.

Let’s see exactly how.

(b) Upper bounding. Consider the semidefinite program

fSDP := min
X∈Sn×n

Tr(AX)

s.t. Xii = 1, i = 1, . . . , n,

X � 0.

(2)

1Recall that the adjacency matrix is a symmetric matrix that has zeros on the diagonal and whose (i, j)

entry equals 1 if students i and j are friends and 0 otherwise.

2



Let UBSDP := 1
4

∑
i,j Aij − 1

4
fSDP . Show that

f ∗ ≤ UBSDP .

(c) Lower bounding. To find a suboptimal solution to (1), Professor Paranoid gives out

the exams according to the following strategy2:

x̂i = sign(X∗(i, 1)), i = 1, . . . , n,

where X∗ is the optimal solution to the SDP in (2) that the solver returns.3 The objective

value of (1) at x̂ clearly gives a lower bound on f ∗. Let’s call this lower bound LBSDP . So

we have

LBSDP ≤ f ∗ ≤ UBSDP .

To examine the quality of these bounds, we are going to compute the ratio LBSDP

UBSDP on some

random instances of this problem. (If this ratio is 1, we have solved problem (1) exactly.)

Suppose there are 70 students in the class and that any two randomly chosen students

are friends with each other with probability 0.3. Generate 50 random instances of such a

friendship network by running the following code (50 times):

1 n=70; p=.3 ; A=ze ro s (n) ;

2 f o r i =1:n−1

3 f o r j=i +1:n

4 h=rand ; i f h<p

5 A( i , j ) =1;A( j , i ) =1;

6 end

7 end

8 end

In each run, compute LBSDP

UBSDP and then show the histogram of this ratio over your 50 runs.

Problem 2: True or False? (Provide a proof or a counterexample.)

(a) For k = 0, 1, . . . , consider the iterations xk+1 = xk + αkdk used to minimize a function

f : Rn → R. If the directions dk are descent directions for all k, the step size is set to

αk = 1
2k

, and the function f is convex, then the iterations satisfy f(xk+1) ≤ f(xk),∀k.
2Here, the function sign(z) returns +1 if z ≥ 0 and −1 otherwise.
3If you are curious, this heuristic is motivated by the fact that if the upper bound in part (b) is tight,

then there is always a rank-1 optimal solution to the SDP whose first column (or any other column actually)

is a ±1 vector that is optimal for (1).
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(b) For k = 0, 1, . . . , consider the iterations xk+1 = xk + αkdk used to minimize a differ-

entiable function f : Rn → R. If the directions dk are descent directions for all k, the

function f is convex and nonnegative, and the step sizes are chosen to guarantee that

f(xk+1) < f(xk) for all k, then the sequence {xk} converges to a point x∗ ∈ Rn that

satisfies ∇f(x∗) = 0.

(c) Consider the following SDP:

min.
X∈Sn×n

Tr(CX)

s.t. Tr(AiX) = bi, i = 1, . . . ,m,

X � 0.

(3)

Let b := (b1, . . . , bm)T , and suppose there exists a vector y ∈ Rm such that bTy = 0 and∑m
i=1Aiyi � C. Then, there exists a matrix X∗ ∈ Sn×n that is feasible to (3) and such

that

Tr(CX∗) ≤ Tr(CX),

for any matrix X that is feasible to (3).

Problem 3: Nearest correlation matrix

You are the CEO of HoneyMoney Technologies LLC, a new hedge fund firm in NYC whose

proprietary optimization algorithms has Wall Street raving. Your main competitor, Renais-

sancE Technologies4, has sent in a spy, disguised as a summer intern, to interfere with your

investments. The spy has gotten his hands on your correlation matrix C of n important

stocks,5 to which he has added some random noise, leaving you with a matrix Ĉ. We remark

that to be a valid correlation matrix, a matrix must be symmetric, positive semidefinite, and

have all diagonal entries equal to one. The spy has been careful enough to make sure that

the resulting matrix Ĉ is symmetric and has ones on the diagonal, but he hasn’t noticed

that his change has made Ĉ not positive semidefinite.

4Not to be confused with Renaissance Technologies that would never do such a thing.
5If you are curious, the correlation matrix is an n × n symmetric matrix used frequently in investment

banking. Its (i, j)-th entry is a number between -1 and 1, with numbers close to 1 meaning that stocks i

and j are likely to move up together, close to -1 meaning that the two stocks are likely to move in opposite

directions, and close to zero meaning that they are likely uncorrelated. The problem of finding the closest

correlation matrix to a given matrix is an important problem in financial engineering; see e.g. this article.
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(a) Suppose we have

Ĉ =


1.00 −0.76 0.07 −0.96

−0.76 1.00 0.18 0.07

0.07 0.18 1.00 0.41

−0.96 0.07 0.41 1.00

 .

Recover the original matrix by finding the nearest correlation matrix to Ĉ in Frobenius norm6

(i.e., the correlation matrix C that minimizes ||C − Ĉ||F ). Give your optimal solution.

(b) Show that for any symmetric matrix Ĉ, the problem of finding the closest correlation

matrix to Ĉ in Frobenius norm has a unique solution.

(c) Suppose Ĉ is symmetric, has ones on the diagonal, but is not positive semidefinite.

Show that the optimal solution to the problem of finding the closest correlation matrix in

Frobenius norm to Ĉ must have at least one zero eigenvalue. (Hint: You may use the fact

that the minimum eigenvalue of a symmetric matrix is a continuous function of its entries.)

Problem 4: Nash equilibria in 2-player games

A bimatrix game is a game between two players each having a finite number of strategies.

If Player 1 has m strategies and Player 2 has n strategies, then the game is fully defined by

two real m×n payoff matrices A and B. When Player 1 plays strategy i and Player 2 plays

strategy j, then the payoffs that they get are respectively Aij and Bij.

In the case where Player 1 chooses to only play strategy i, we represent her choice by a

vector x ∈ Rm which consists of all zeros except for a 1 in the ith position. This is called

a “pure strategy”. However, Player 1 can also choose to play a “mixed strategy”, where she

chooses to play a convex combination of her m strategies. In either case, Player 1’s strategy

is always an element of the “unit simplex”, which by definition is the following set:

∆m =

{
x ∈ Rm|

m∑
i=1

xi = 1, xi ≥ 0

}
.

Likewise, Player 2’s strategy will be an element of ∆n. Under a pair of mixed strategies

(x, y) ∈ ∆m ×∆n, the payoff of Player 1 is xTAy and the payoff of Player 2 is xTBy.

6Recall what the Frobenius norm is from a previous problem set.

5

https://www.princeton.edu/news/2015/05/27/tragic-meaningful-life-legendary-princeton-mathematician-john-nash-dies


A pair of strategies (x∗, y∗) constitutes a Nash equilibrium if no player can improve his/her

payoff by a unilateral deviation:

x∗ ∈ ∆m,

y∗ ∈ ∆n,

x∗
T

Ay∗ ≥ xTAy∗, ∀x ∈ ∆m,

x∗
T

By∗ ≥ x∗
T

By, ∀y ∈ ∆n.

(4)

This means that if Player 2 sticks to his strategy y∗, then there is no incentive for Player

1 to change her strategy from x∗ to some other strategy, and, conversely, if Player 1 sticks

to her strategy x∗, then there is no incentive for Player 2 to change his strategy from y∗ to

some other strategy. Hence, we are at some sort of an “equilibrium” (Trump will not bomb

Kim Jong-un, Kim Jong-un will not bomb Trump, and life will remain good).

Nash’s big result was to prove that independent of A and B, a (Nash) equilibrium always

exists.7 His paper however, did not give an algorithm for finding such equilibria.

(a) Show that a pair of strategies (x∗, y∗) is a Nash equilibrium if and only if it satisfies

x∗ ∈ ∆m,

y∗ ∈ ∆n,

x∗
T

Ay∗ ≥ eTi Ay
∗, i = 1, . . . ,m,

x∗
T

By∗ ≥ x∗
T

Bei, i = 1, . . . , n,

(5)

where ei is a vector (in Rm or Rn) with only zeros, except for a 1 in the ith position.

(b) An important class of bimatrix games is the so-called zero-sum games. These are games

whose payoff matrices satisfy B = −A. This means that the two players are in direct

competition (any win for Player 1 is a loss for Player 2 and vice versa). For example, the

classic “rock-paper-scissors” game is a zero-sum game. Show that in a zero-sum game,

a pair of strategies (x∗, y∗) is a Nash equilibrium if and only if it satisfies

x∗ ∈ ∆m, y
∗ ∈ ∆n, x∗

T

Aej ≥ eTi Ay
∗, ∀{i, j} ∈ {1, . . . ,m} × {1, . . . , n}.

(c) Consider the zero-sum game given by

A =

1 3 −3

0 1 2

3 −1 −1

 , B = −A.

Find a Nash equilibrium of this game. Is the Nash equilibrium unique? Justify.

7In fact, he proved the result more generally for games among a finite number of players.
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