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1. Please write out and sign the following pledge on top of the first page of your exam:

“I pledge my honor that I have not violated the Honor Code or the rules specified by the instructor

during this examination. I have not spent more than 48 hours total on this exam.”

2. Don’t forget to write your name on the exam. Make a copy of your solutions and keep it.

3. The exam is not to be discussed with anyone except possibly the professor and the TAs. You can only

ask clarification questions, and only as public (and preferably non-anonymous) questions on Piazza.

No emails.

4. You are allowed to consult the lecture notes, your own notes, the reference books of the course as

indicated on the syllabus, the problem sets and their solutions (yours and ours), the midterm and its

solutions (yours and ours), the practice midterm and final exams and their solutions, all Piazza posts,

but nothing else. You can only use the Internet in case you run into problems related to MATLAB

or CVX.

5. You are allowed to refer to facts proven in the notes or problem sets without reproving them.

6. For all problems involving MATLAB or CVX, show your code. The MATLAB output that you present

should come from your code.

7. Unless you have been granted an extension because of overlapping finals, the exam is to be turned in

on Friday (January 18, 2018) at 10 AM in the instructor’s office (Sherrerd 329). If you cannot make

it on Friday and decide to turn in your exam sooner, or if your deadline is different under the rules of

the exam, you have to drop your exam off in the ORF 363 box of the ORFE undergraduate lounge

(Sherrerd 123). If you do that, you need to write down the date and time on the first page of your

exam and sign it. You can also submit the exam electronically on Blackboard as a single PDF file.

8. Good luck!



Grading

Problem 1 20 pts

Problem 2 20 pts

Problem 3 20 pts

Problem 4 20 pts

Problem 5 20 pts

TOTAL 100
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Problem 1: Deciphering a secret

Amirali has a secret message to convey to his ORF 363 students during the final exam. To

protect its secrecy against students outside of class, he decides to first write the message in

binary, as a vector xsecret ∈ {0, 1}360. He then encrypts this binary message by generating

a random matrix A ∈ R200×360 (using the command A=randn(200,360) in MATLAB) and

then computing a vector y ∈ R200 as y = Axsecret. (Note that y here is much smaller in

length than x so a priori one would think that y has lost part of the information contained in

x.) Amirali then shares A and y in the file encrypted secret.mat, hoping that his students

would be able to recover the original message xsecret using their new-found knowledge but

others would not.

1. To recover xsecret, consider the optimization problem

min
x∈Rn

n∑
i=1

(xi − x2i )

s.t. Ax = y

0 ≤ x ≤ 1.

(1)

What is the optimal value of (1)? Justify. Is (1) a convex optimization problem?

Justify.

2. Because problem (1) seems difficult to solve, we replace the objective function with its

first-order Taylor approximation at the origin, ending up with the problem

min
x∈Rn

n∑
i=1

xi

s.t. Ax = y

0 ≤ x ≤ 1.

(2)

Is (2) a convex optimization problem? Does your optimal solution to (2) allow you to

recover an optimal solution to (1)?

3. Using a binary-to-text converter,1 tell us the secret message in text.

1Available e.g. at https://codebeautify.org/binary-to-text.
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Problem 2: Convex optimization applied to non-convex problems

Consider the optimization problem

min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,
(3)

whose feasible set is non-empty and compact. Suppose for i = 0, . . . ,m, the functions

fi : Rn → R can be written as fi(x) = gi(x)−hi(x), where gi : Rn → R and hi : Rn → R are

all convex functions, hi’s are all differentiable, and g0 is a strictly convex function. Consider

the following algorithm for approximately solving (3):

Algorithm 1

Input: the functions gi(x), hi(x) for i = 0, . . . ,m, a vector x0 ∈ Rn which is feasible to (3),

a positive integer N .

Output: a vector xN ∈ Rn.

1: procedure

2: k ← 0

3: while k < N do

4: Let fki (x) ..= gi(x)−
(
hi(xk) +∇hi(xk)T (x− xk)

)
, i = 0, . . . ,m

5: Solve the optimization problem: min
x∈Rn

fk0 (x), s.t. fki (x) ≤ 0, i = 1, . . . ,m

6: Let xk+1 denote its optimal solution

7: k ← k + 1

8: end while

1. Show that the optimization problem solved in each iteration of Algorithm 1 is a convex

optimization problem and has a unique optimal solution.

2. Preserving feasibility. Show that the points x1, . . . , xN generated by Algorithm 1 are

all feasible to (3).

3. The descent property. Show that the points x1, . . . , xN generated by Algorithm 1 satisfy

f0(xk+1) ≤ f0(xk) for k = 0, . . . , N − 1.

4. Show that any quadratic function f(x) = xTQx + cTx + b can be written as f(x) =

g(x) − h(x), where g and h are strictly convex functions. (Hence, at least when

f0, . . . , fm in (3) are all quadratic functions, Algorithm 1 is applicable.)
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Problem 3: How bad can one iteration of gradient descent be for convex opti-

mization?

We saw in lecture that the negative of the gradient is always a descent direction for a

differentiable function, in fact the direction of steepest descent. However, if the step size of

a descent algorithm is chosen too large, moving along this direction can potentially increase

the function. In this problem, we would like to see how bad this can get on a family of

convex polynomials.

Suppose our goal is to apply the gardient descent algorithm to minimize a univariate degree-4

polynomial

p(x) = c4x
4 + c3x

3 + c2x
2 + c1x,

which is known to satisfy the following three constraints:

1. p is a convex function,

2. p′(2) = 1,

3. |ci| ≤ 10 for i = 1, . . . , 4.

Suppose we apply one iteration of gradient descent starting from x0 = 2 and with a step

size of one. Observe that with this initial point, the next iterate will be x1 = x0− p′(2) = 1.

What is the largest value of p(x1) − p(x0), as p varies over all degree-4 polynomials that

satisfy the three properties above? (You can write down the value that CVX returns with

three digits after the decimal point.)

Write down a degree-4 polynomial with the above properties that leads to worst-case per-

formance for one step of the gradient descent algorithm with unit step size.

Hint: You can use the fact that a quadratic polynomial is nonnegative if and only if it is a

sum of squares (no need to prove this fact).
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Problem 4: Solving easy linear programs quickly

Let c, y1, . . . , ym ∈ Rn be given. Describe an algorithm for finding the optimal value of the

linear program

min
x∈Rn, λ∈Rm

cTx

s.t. x =
m∑
i=1

λiyi

m∑
i=1

λi = 1

λi ≥ 0, i = 1, . . . ,m,

(4)

which involves at most mn scalar-scalar multiplications, mn scalar-scalar additions, and m

scalar-scalar comparisons. (Here, the comparison of two scalars means to decide which one

is less than or equal to the other.) Carefully justify why your algorithm gives the correct

optimal value.
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Problem 5: When does a population go extinct?

Consider the linear dynamical system
x1k+1

x2k+1

x3k+1
...

xnk+1

 =


a11 a12 a13 . . . a1n

a21 0 0 . . . 0

0 a32 0 . . . 0
...

. . . . . .
...

0 . . . . . . an,n−1 0




x1k
x2k
x3k
...

xnk

 ,

which models the growth dynamic of a population. In this model, the variable xik denotes

the number of individuals in age group i (i.e., those who are i−1 to i years old), in year k of

the history of the population. We have i ∈ {1, . . . , n} as we are assuming that no individual

stays alive for more than n years. The index k of time, however, runs forever. Note that the

structure of the square matrix governing the dynamics (let us call it A) is quite intuitive:

at each time stage, only a fraction a(i+1)i of people in age group i make it to the age group

i + 1. At the same time, each age group i contributes a fraction a1i to the newborns in the

next stage.

Consider an instance of this dynamical system given by

A =


0.1 0.2 0.3 0.4 a15

0.9 0 0 0 0

0 0.8 0 0 0

0 0 0.6 0 0

0 0 0 0.7 0

 .

What is the largest value of a15 for which the population will eventually go extinct, regardless

of the initial population that the dynamical system starts from? Give this cutoff value to

two digits after the decimal point.

Hint 1: You can use the following mathematical fact (no need to prove it): The population

will go extinct if and only if the linear dynamical system admits a Lyapunov function of the

type V (x) = xTQx, where Q is a symmetric 5 × 5 matrix. Try different values of a15 and

use semidefintie programming to see if such a Lyapunov function exists.

Hint 2: You may want to use the following inequality (no need to prove it) to show cer-

tain properties of your Lyapunov function: xTQx ≥ λmin(Q)||x||2,∀x ∈ R5. Here, λmin(Q)

denotes the smallest eigenvalue of Q.

Hint 3: To have a valid semidefinite programming formulation, if you ever need to impose a

constraint of the type E � 0 for some matrix E, instead impose the constraint E � I and

argue why this does not affect feasibility.
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