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1. Please write out and sign the following pledge on top of the first page of your exam:

“I pledge my honor that I have not violated the Honor Code or the rules specified by the instructor

during this examination. I have not spent more than 48 hours total on this exam.”

2. Don’t forget to write your name on the exam. Make a copy of your solutions and keep it.

3. The exam is not to be discussed with anyone except possibly the professor and the TAs. You can only

ask clarification questions, and only as public (and preferably non-anonymous) questions on Piazza.

No emails.

4. You are allowed to consult the lecture notes, your own notes, the reference books of the course as

indicated on the syllabus, the problem sets and their solutions (yours and ours), the midterm and

its solutions (yours and ours), the practice midterm and final exams and their solutions, all Piazza

posts, but nothing else. Unless otherwise specified in the statement of a problem, you can only use

the Internet in case you run into problems related to MATLAB or CVX.

5. You are allowed to refer to facts proven in the notes or problem sets without reproving them.

6. For all problems involving MATLAB or CVX, show your code. The MATLAB output that you present

should come from your code.

7. Unless you have been granted an extension because of overlapping finals, the exam is to be turned in

on Friday (January 17, 2020) at 10 AM in the instructor’s office (Sherrerd 329). If you cannot make

it on Friday and decide to turn in your exam sooner, or if your deadline is different under the rules of

the exam, you have to drop your exam off in the ORF 363 box of the ORFE undergraduate lounge

(Sherrerd 123). If you do that, you need to write down the date and time on the first page of your

exam and sign it. You can also submit the exam electronically on Blackboard as a single PDF file.

8. Good luck!



Grading

Problem 1 30 pts

Problem 2 30 pts

Problem 3 20 pts

Problem 4 20 pts

TOTAL 100
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Problem 1: Optimal spying

At some universities like Princeton, professors have it easy. The students uphold such a high

standard of academic integrity that there is no reason to worry about complications around

cheating. As you may recall from Problem 1 of our Fall 2017 final however, this is sadly

not the case at Cheatston University, where Professor Paranoid is (once again) holding a

take-home final exam.

This time around, Professor Paranoid is tired of creating two different sets of exam questions.

Instead, he decides to catch the cheaters by secretly monitoring electronic communication

among his students. (After all, 2020 is far into the post-privacy era!) His plan is to covertly

install surveillance software on his students’ cell phones. This, as you can imagine, is a costly

and risky thing to do. So Professor Paranoid wants to target as few students as possible

while ensuring that any communication among friends is monitored.

More formally, suppose that Professor Paranoid has access to the “friendship network” of

his students; this is a graph G with n students as nodes and an edge between two nodes if

and only if the two students are friends. If we denote the adjacency matrix1 of this graph by

A, then the optimization problem that Professor Paranoid wants to solve is the following:

f ∗ :=min
x∈Rn

n∑
i=1

xi

s.t. xi(xi − 1) = 0, i = 1, . . . , n,

xi + xj ≥ 1, if Aij = 1.

(1)

(a) We say that a friendship is “monitored” if the surveillance software is installed on the

cell phone of at least one of the two students involved in this friendship. Argue why the

optimal value f ∗ to problem (1) is equal to the minimum number of students who should be

targeted by the surveillance software in order to ensure that all friendships in the class are

monitored. Show that the above problem is not a convex optimization problem.2

It turns out that problem (1) is NP-hard to solve. Nevertheless, you know from ORF 363

that convex optimization can approximately solve NP-hard problems and find useful bounds

on their optimal value. Let’s see exactly how.

1Recall that the adjacency matrix is a symmetric matrix that has zeros on the diagonal and whose (i, j)

entry equals 1 if students i and j are friends and 0 otherwise.
2For a more serious application of problem (1), think of replacing “Professor Paranoid” with the FBI and

the “friendship network” with some criminal network.
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(b) Lower bounding by LP. Consider the linear program

LBLP :=min
x∈Rn

n∑
i=1

xi

s.t. 0 ≤ xi ≤ 1, i = 1, . . . , n,

xi + xj ≥ 1, if Aij = 1.

(2)

Argue why we must have

LBLP ≤ f ∗.

(c) Lower bounding by SDP. Consider the semidefinite program

fSDP := max
X∈Sn×n

Tr(JX)

s.t. Xij = 0, if Aij = 1,

Tr(X) = 1,

X � 0,

(3)

where Sn×n denotes the set of real symmetric n× n matrices, J is the all-ones matrix, and

Tr stands for the trace operation. Let LBSDP := n− fSDP . Show that

LBSDP ≤ f ∗.

(d) Upper bounding by rounding the LP solution. Professor Paranoid installs the surveil-

lance software according to the strategy3

x̂i =

1 if xLPi ≥ 1
2

0 if xLPi < 1
2
,

for i = 1, . . . , n,

where xLP is an optimal solution to the LP in (2). Let UBLP :=
∑n

i=1 x̂i. Show the following

two inequalities:

f ∗ ≤ UBLP ≤ 2f ∗.

(e) Numerical experiments. To examine the quality of these bounds, we are going to

compute three quantities on some random instances of this problem:

LBSDP − LBLP ,
UBLP

LBLP
,
UBLP

LBSDP
.

3In other words, student i is a target for the surveillance software if and only if x̂i=1.
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Suppose there are 20 students in the class and that any two randomly chosen students

are friends with each other with probability 0.2. Generate 50 random instances of such a

friendship network by running the following code (50 times):

1 n=20; p=.2 ; A=ze ro s (n) ;

2 f o r i =1:n−1

3 f o r j=i +1:n

4 h=rand ; i f h<p

5 A( i , j ) =1;A( j , i ) =1;

6 end

7 end

8 end

In each run, compute4 LBSDP −LBLP , UBLP

LBLP and UBLP

LBSDP . Plot the histogram of each of these

three quantities over your 50 runs. Briefly comment on any observations you may have.

4To compute x̂, we suggest that you add 0.0001 to each entry of the solution xLP that the solver returns

before rounding it. This is because some entries of xLP can in reality be equal to 1
2 , but be returned as

0.4999 by the numerical solver.
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Problem 2: Convergence of Newton’s method

Consider the univariate function5 f(x) = 20x arctan(x)− 10 log(1 + x2) + x2.

(a) Is f convex? Strictly convex? Why or why not?

(b) What are the global minima of f? Show your reasoning.

(c) Is Newton’s method for minimizing f globally convergent? In other words, do all initial

points x0 ∈ R converge to a global minimum of f under the iterations of the Newton

method? Why or why not?

Hint: To answer this question, you may want to go through the following steps:

• On your computer, run Newton’s method from various initial conditions to get a

feel for its behavior. Comment on your numerical observations.

• Let N(x) = x− f ′(x)
f ′′(x)

(this is the “Newton map”). Show that N ′(x) ≤ 0, ∀x ∈ R.

• Show that |x| ≥ 2 =⇒ |N(x)| ≥ 2. You may want to start by showing that

x ≥ 2 =⇒ N(x) ≤ −2.

Problem 3: SDPs with rational data but no rational feasible solution

In a previous problem set, we saw that unlike linear programs, semidefinite programs with

rational data may have irrational optimal solutions. In this problem, you are asked to show

that the same phenomenon can occur for feasible solutions.

Give an example of symmetric n× n matrices A1, . . . , Am with rational entries and rational

numbers b1, . . . , bm such that the set

S : = {X ∈ Sn×n| Tr(AiX) = bi, i = 1, . . . ,m,X � 0}

is non-empty, but only contains matrices that have at least one irrational entry. Here, Sn×n

denotes the set of symmetric n × n matrices with real entries and Tr stands for the trace

operation. You can pick any value for n and m that you like as long as the above requirements

are met.

(Hint : You may want to first impose positive semidefiniteness constraints on two 2 × 2

decision matrices and then convert them into a positive semidefiniteness constraint on a

single 4× 4 decision matrix.)

5Here, log(x) is the natural logarithm and arctan(x) is the inverse of the tan(x) = sin(x)
cos(x) function. You

are allowed to look up the derivatives of these functions if you do not remember them.
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Problem 4: Putting the F in ORFE

Last year, your friend Finn Anshall graduated from Princeton with $10,000 in his pocket

and a desire to use the skills he learned from his optimization courses to make some money.

He recalled learning about the following optimization problem,6 which determines in what

fractions one’s money should be invested in n given stocks so the resulting portfolio gives

maximum return while having limited risk (or variance):

max
x∈Rn

µTx

s.t. xTΣx ≤ δ,

xi ≥ 0, i = 1, . . . , n,
n∑

i=1

xi = 1.

(4)

Here, δ ∈ R is a risk-aversion parameter. To describe what µ and Σ are, let us first talk

about returns. The return of a particular stock in a particular month is computed as

Stock price at end of month− Stock price at end of previous month

Stock price at end of previous month
.

Let rj ∈ Rn denote the vector of returns of all stocks in a particular month j. If we have

access to past return vectors over a period of m months, then µ ∈ Rn is the vector of

average monthly returns; i.e., µ = 1
m

∑m
j=1 rj. The symmetric n×n matrix Σ is the so-called

empirical covariance matrix7 of the monthly returns. It is computed as

Σ =
1

m− 1

m∑
j=1

(rj − µ)(rj − µ)T .

(a) Is (4) a convex optimization problem? Why or why not?

(b) Finn looked up on Yahoo! Finance the monthly closing prices of five stocks—Apple

(AAPL), Coca Cola (COKE), Google (GOOG), Alibaba (BABA), and CMC (CMC)—

from September 2014 to August 2018. He then followed the procedure described above

to compute µ and Σ, which can be found in the file StockData.mat (using the command

6This model was proposed by Harry Markowitz in 1952 and earned him a Nobel Prize in Economics in

1990. For simplicity, we are ignoring transaction costs or the possibility of shorting a stock, though the

model can be easily adjusted to allow for these.
7The off-diagonal entries of this matrix indicate whether two stocks are likely to move up or down in

price together.
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load StockData). Solve problem (4) using this µ and Σ and with δ = .003. Report Finn’s

optimal solution and optimal value.

(c) On the last Friday of September 2018, Finn invested his $10,000 according to the

optimal solution of (4) you just obtained. Find out how much his portfolio is worth now (i.e.,

on January 14, 2020). The stock prices on these two dates are available in StockData.mat

and are copied below:

Stock September 28, 2018 January 14, 2020

Apple $221.63 $312.68

Coca Cola $181.33 $277.43

Google $1193.47 $1430.88

Alibaba $164.76 $226.49

CMC $19.86 $22.22

Compare this to the portfolio of Finn’s roommate, who did not take any optimization courses

and split his $10,000 evenly across the five stocks on September 28, 2018. How much is the

roommate’s portfolio worth on January 14, 2020?
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