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1. Please write your name on the first page of your solutions. Next to it, please write out

and sign the following pledge: “I pledge my honor that I have not violated the Honor

Code or the rules specified by the instructor during this examination.”

2. The exam is not to be discussed with anyone except possibly the instructors and

the AIs. You can only ask clarification questions, and only as public (and preferably

non-anonymous) questions on Ed Discussion. No emails.

3. You are allowed to consult the lecture notes, your own notes, the reference books of

the course as indicated on the syllabus, the problem sets and their solutions (yours

and ours), the midterm and its solutions (yours and ours), the practice midterm and

final exams and their solutions, all Ed Discussion posts, all videos, but nothing else.

You can only use the Internet in case you run into problems related to software.

4. You may refer to facts proven in the notes or problem sets without reproving them.

5. For all computational problems, include your code. The output that you present should

come from your code.

6. Unless you have been granted an extension because of overlapping finals, the exam is

to be turned in on Friday (December 17, 2021) at 10 AM EST on Gradescope as a

single PDF file. You are free to write your solutions on paper or on a tablet, or to type

them up. Only the latest version submitted before your deadline will be graded.

7. Each question has 25 points. You need to justify your answers to receive full credit.



Problem 1: Friends in High Places

You follow the path of Jeff Bezos and become a billionaire after graduation. Naturally, you

feel compelled to send your friends to space. You would like to send as many friends as

possible, but on a safety-critical mission like this, there is no room for disagreement on the

spaceship. If you have n friends to choose from, you write down an n× n matrix describing

the disagreement between any pair of friends. The entries of this matrix are real numbers

between 0 and 1, where 0 means “they get along perfectly” and 1 means “they fight all the

time”. This matrix is symmetric and has zero diagonal. Here is an example of a disagreement

matrix when there are five friends to choose from:
1 2 3 4 5


1 0 0.1 0.6 0.4 0.7

2 0.1 0 0.4 0.2 1.0

3 0.6 0.4 0 0.3 0.4

4 0.4 0.2 0.3 0 0.7

5 0.7 1.0 0.4 0.7 0

.

For a given subset of friends, the total disagreement is the sum of all disagreement values be-

tween pairs in the subset. For example, the set of friends {1, 3, 4} incurs a total disagreement

of 0.6+0.4+0.3 = 1.3. Given your disagreement matrix M and a nonnegative scalar p, you

want to find the maximum number of friends you can send to space with total disagreement

at most p.1 You formulate this problem as follows:

η∗ := max
x∈Rn

n∑
i=1

xi

s.t.
n∑

i,j=1

Mijxixj ≤ 2p

xi(xi − 1) = 0 for i = 1, . . . , n.

(1)

1. Consider the following linear program2:

η∗LP := max
x∈Rn

n∑
i=1

xi

s.t.
n∑

i,j=1

Mij max{xi + xj − 1, 0} ≤ 2p

0 ≤ xi ≤ 1 for i = 1, . . . , n.

(2)

Show that η∗ ≤ η∗LP .

1While you are not required to show this, the problem you are facing is NP-hard.
2Even though no points are assigned to this, you may want to convince yourself that this optimization

problem can indeed be reformulated as a linear program.
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2. Let Sn+1 denote the set of symmetric (n+1)× (n+1) matices. Let M̂ ∈ Sn+1 denote

the matrix obtained fromM by adding a row and a column of zeros, i.e., M is the upper

left n × n submatrix of M̂ and the other entries of M̂ are all zeros. For i = 1, . . . , n,

let Ai ∈ Sn+1 denote the matrix with Ai
ii = 1, Ai

i,n+1 = Ai
n+1,i = −0.5, and zeros

everywhere else. Consider the following semidefinite program:

η∗SDP := max
X∈Sn+1

Tr(X)− 1

s.t. Tr(M̂X) ≤ 2p

Tr(AiX) = 0 for i = 1, . . . , n

Xn+1,n+1 = 1

X ⪰ 0.

(3)

Show that η∗ ≤ η∗SDP .

3. Solve problems (2) and (3) for the 14×14 matrixM given in disagreement matrix.mat

and p = 1.12. You may use the following code to load the disagreement matrix:

load ( ’ d i sagreement matr ix . mat ’ )

Report the two optimal values and specify in each case whether they are equal to η∗.

Which of your 14 friends should you be sending to space?
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Problem 2: Winter Break Trip

For the winter break, you are planning to travel to a national park with 4 lakes. Each lake Li

has the shape of an ellipse with known center ci ∈ R2 and shape matrix Ai ∈ R2×2, Ai ≻ 0:

Li =
{
x ∈ R2 | (x− ci)

⊤Ai(x− ci) ≤ 1
}
, i = 1, . . . , 4.

The lakes are shown in the figure below and correspond to the following data:

A1 =

[
1 0

0 6

]
, A2 =

[
8 −2

−2 1

]
, A3 =

[
4 1

1 2

]
, A4 =

[
8 2.5

2.5 1.5

]
,

c1 = [−1, 4]⊤, c2 = [1, 3]⊤, c3 = [0, 5.5]⊤, c4 = [−0.5,−2]⊤.

You want to visit all 4 lakes, one lake per day. You need to pick a permanent location z ∈ R2

for your tent where you will be staying overnight. On the i-th day, you will be hiking from

your tent to the i-th lake and back (using the shortest route to the closest point of each

lake). For simplicity, no restrictions are imposed on the permanent location z of your tent.

Write down and solve two convex optimization problems which would respectively minimize:

(a) the sum of squared Euclidean distances to all the lakes;

(b) the maximum Euclidean distance to any of the lakes (i.e. on no day you want to hike

too much).

Report the optimal solutions. You can optionally plot your optimal solutions on the MAT-

LAB figure provided (no points are assigned to plotting). For instance, to plot the point

[2, 1]⊤ on the map, you can use the following code:

open f i g ( ’ l a k e s . f i g ’ )

p l o t (2 , 1 , ’ k∗ ’ , ’ MarkerSize ’ , 10 , ’ LineWidth ’ , 2)
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Problem 3: Dynamical Leontief Economy

Recall the Leontief input-output model from Lecture 10. Imagine an economy where each

sector decides its production amount for tomorrow based on the demand today. Let n denote

the number of sectors, C ∈ Rn×n be the consumption matrix, d ∈ Rn be the demand vector

of the open sector (e.g., the general public), and xt ∈ Rn be the vector of production on day

t. Then, xt evolves according to the dynamics:

xt+1 = Cxt + d.

As we have seen, the right amount of production in the Leontief model is x∗ = (I−C)−1d. If

the initial production x0 ∈ Rn is away from x∗, one might wonder if the economy can balance

itself given enough time. More precisely, we want to see if xt → x∗ as t → ∞. Consider

the same Leontief economy as in Problem Set 6. There are four sectors and a consumption

matrix C given by:

Agriculture Energy Transportation Manufacturing

Agriculture 0.1 0 0.15 0.15

Energy 0.15 0.12 0 0

Transportation 0.1 0.15 0.2 0.15

Manufacturing 0 0.1 0.1 0.7.

Prove that (no matter what the vector d is) for any initial x0 ∈ R4, we have xt → x∗.

Hint: Show this by presenting an appropriate quadratic Lyapunov function. It may be

helpful to perform a change of variables first.

Problem 4: Making The Most Out of an Optimal Value Blackbox

Consider the following optimization problem

min f(x)

s.t. x ∈ Ω,
(4)

where f : Rn → R is a continuous function and Ω ⊆ Rn is a nonempty, closed, and bounded

set. Suppose you have a blackbox that can return the optimal value of any optimization

problem with a continuous objective function and a nonempty, closed, and bounded feasible

set. How can you use only this blackbox (potentially many times) to:

(a) find an optimal solution to (4),

(b) test if the optimal solution to (4) is unique.

In each case, how many calls to the blackbox does your approach require?
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