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1. Please write your name on the first page of your solutions. Next to it, please write out

and sign the following pledge: “I pledge my honor that I have not violated the Honor

Code or the rules specified by the instructor during this examination.”

2. The exam is not to be discussed with anyone except possibly the instructors and

the AIs. You can only ask clarification questions, and only as public (and preferably

non-anonymous) questions on Ed Discussion. No emails.

3. You are allowed to consult the lecture notes, your own notes, the reference books of

the course as indicated on the syllabus, the problem sets and their solutions (yours and

ours), the midterm and its solutions (yours and ours), the practice midterm and final

exams and their solutions, all Ed Discussion posts, but nothing else. You can only use

the Internet in case you run into problems related to software.

4. You may refer to facts proven in the notes or problem sets without reproving them.

5. For computational problems, include your code. The output you present should come

from your code. Report requested numerical values to 4 digits after the decimal point.

6. You have 48 hours from the time of download to submit this exam on Gradescope as a

single PDF file. The latest submission time is Thursday (December 21, 2023) at 10PM

EST. You are free to write your solutions on paper or on a tablet, or to type them up.

Only the latest version submitted before your deadline will be graded.

7. Each question has 25 points. You need to justify your answers to receive full credit.



Problem 1: Setting the odds in your favor with semidefinite programming

As the CEO of TigerCasino in Vegas, you are introducing a new game on your floor. In this

game, a player rolls a die twice and receives qij dollars from the casino if the die shows i

on one roll and j on the other (the order does not matter). The matrix Q = (qij)1≤i,j≤6 is

announced to the player:

Q = 100×



4 −2 1 −1 −2 1

−2 4 1 −2 −2 −1

1 1 4 −2 1 −1

−1 −2 −2 4 1 −1

−2 −2 1 1 4 −1

1 −1 −1 −1 −1 4


.

Gamblers are leaving the Bellagios and rushing to your table because if the die was fair

(i.e., had a probability of 1
6
assigned to each outcome of a roll), they would make $11.11
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in expectation in every play. Little do they know, however, that you have been using your

optimization knowledge to optimally bias the die and maximize the profit of TigerCasino.

Let xi be the probability that the die comes out i. The optimization problem of interest to

you is:

min
x∈R6

xTQx

s.t. x ≥ 0
6∑

i=1

xi = 1.

(1)

The constraints make sure that x is a valid probability vector and the objective function is

the expected payoff of the player in every play.

(a) Is problem (1) a convex optimization problem? Why or why not?

(b) Recall that a matrix A ∈ Sn×n is copositive if xTAx ≥ 0 for all x ≥ 0. Denote the set

of n × n copositive matrices by Cn. Show that the optimal value of (1) is equal to the

optimal value of the following problem:

max
t∈R

t

s.t. Q− tJ ∈ C6.
(2)

Here, J ∈ S6×6 is the all-ones matrix.

(c) Denote the optimal value of (1) (or equivalently (2)) by OPT . Denote the optimal value

of the semidefinite program

max
t∈R,N∈S6×6

t

s.t. Q− tJ −N ⪰ 0

N ≥ 0

(3)

by SDPOPT . (Here, “≥” denotes an entrywise nonnegativity constraint and “⪰” denotes

a positive semidefiniteness constraint.) Show that SDPOPT ≤ OPT .

(d) Report SDPOPT by solving (3) in cvx or cvxpy. Show that SDPOPT = OPT by

presenting a vector x∗ ∈ R6 that is feasible to (1) and makes the objective function of

(1) equal to SDPOPT . (Hint: you may wish to start with an eigenvector associated with

the smallest eigenvalue of Q− t∗J−N∗, where (t∗, N∗) form an optimal solution to (3).)

What probability does your optimal die assign to each of its six outcomes? What is the

expected win/loss of TigerCasino in dollars every time a player plays this game?
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Problem 2: Would your GPA be higher at Yale?

An article appeared earlier this month in the New York Times with the title “Nearly Everyone

Gets A’s at Yale. Does That Cheapen the Grade?”1 After reading the article, you may

wonder whether it is easier to get an A at Yale than at Princeton and, if so, how one could

adjust GPAs to account for course difficulty. In this problem, we approach this question

using an optimization-based idea proposed by Professor Vanderbei2 and his collaborators.

1https://www.nytimes.com/2023/12/05/nyregion/yale-grade-inflation.html
2We also take this opportunity to honor Professor Vanderbei who is retiring this January after teaching

at Princeton for 33 years.
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We begin by asking four familiar Princeton/Yale students to take some courses at their own

institution and a few similar ones at the other institution. The letter grades of these students

are summarized in Table 1. Their GPAs are calculated using the grade points in Table 2.

Princeton Princeton Princeton Yale Yale Yale

ORF 363 ENG 351 ORF 309 CPSC 365 ENGL 305 STAT 241 GPA Aptitude

M. Obama A- A B+ A+ 3.825 ?

J. Bezos A+ A- B- A 3.675 ?

M. Streep B- A A A 3.675 ?

R. DeSantis B- A+ A+ A+ 3.9 ?

Inflatedness ? ? ? ? ? ?

Table 1: Performance of four students in six courses

Letter Grade A+ A A- B+ B B-

Grade Point 4.3 4.0 3.7 3.3 3.0 2.7

Table 2: Converting letter grades to grade points

We assume that the grade point gij that student i receives in course j should nearly be equal

to ai + bj, where ai is the “aptitude” of student i and bj is the “inflatedness” of course j. In

our example, i ∈ {1, . . . , 4}, and j ∈ {1, . . . , 6}. We normalize the inflatedness scores with

the constraint
6∑

j=1

bj = 0 (negative inflatedness scores correspond to more difficult courses).

This leads us to the following optimization problem which simultaneously computes student

aptitudes and course inflatedness scores:

min
a∈R4,b∈R6

∑
(i,j)∈G(gij − ai − bj)

2

s.t.
6∑

j=1

bj = 0.
(4)

Here, the index set G denotes the student-course pairs for which a grade is available.

(a) Is problem (4) a convex optimization problem? Why or why not?

(b) Use Tables 1 and 2 to solve problem (4) via cvx or cvxpy. Fill in the question marks in

Table 1 with your optimal solution.

(c) How do the four students rank based on their aptitude (which can be thought of as an

“adjusted GPA”)? Compare this to the GPA-based ranking. Which courses have the

lowest/highest inflatedness score?
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Problem 3: Getting More Than You Receive

Your friend would like to send a signal x∗ ∈ Rn of length n = 256 to you by transmitting a

much smaller vector b ∈ Rm with m < n to save data. Fortunately, x∗ is sparse in some basis:

you know that if D ∈ Rn×n is the discrete cosine transform matrix (the details of which will

not be important for this problem), then the vector z = Dx∗ ∈ Rn has few nonzero entries.

To compress x∗, your friend takes m = 32 measurements using a random matrix A ∈ Rm×n

(generated from a particular seed so that you have access to the same matrix), and transmits

the vector Ax∗. On the other end of the channel, you receive the signal b = Ax∗ + e ∈ Rm,

where e ∈ Rm represents some random noise introduced during transmission. Will you be

able to recover x∗ from b; i.e., not only filter out the noise but also get much more than you

receive? Let’s see!

The following Python code generates the data x∗, A, D, and b described above:

import numpy as np; from scipy.fftpack import dct

freq = np.array([29, 30, 196, 223])

x_star = np.array([sum(np.cos(2*np.pi*freq/256*(i+0.5))) for i in range(256)])

D = dct(np.eye(256), axis=0, type=2, norm="ortho")

np.random.seed(363)

A = (2*np.random.rand(32, 256) - 1) / np.sqrt(32 / 3)

b = A @ x_star + 0.05*(2*np.random.rand(32) - 1)
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The following MATLAB code generates the data x∗, A, D, and b described above:

freq = [29, 30, 196, 223];

x_star = zeros(256, 1);

for i = 1:256

x_star(i) = sum(cos(2 * pi * freq / 256 * (i - 0.5)));

end

D = dct(eye(256));

rng(363, "twister");

A = (2*transpose(rand(256, 32)) - 1) / sqrt(32 / 3);

b = A * x_star + 0.05*(2*rand(32, 1) - 1);

(a) You first attempt to recover your friend’s signal x∗ by finding a vector whose measure-

ments are closest in ℓ2 norm to the signal b that you received:

min
x∈Rn

∥Ax− b∥2. (5)

Does problem (5) have a unique solution? Prove that any solution to (5) solves the

equations AT (b−Ax) = 0, and hence conclude that the true signal x∗ is not optimal for

this problem. Solve (5) using cvx or cvxpy, and compare the solution that you obtain

against x∗ by plotting both vectors on the same figure.

(b) You remember that you can also minimize the ℓ1 norm3 of z = Dx to promote sparsity.

Since you know that AT (b − Ax∗) ̸= 0, you relax this condition by constraining the ℓ∞

norm of AT (b− Ax). This leads you to the following problem:

min
x∈Rn

∥Dx∥1

s.t. ∥AT (b− Ax)∥∞ ≤ 0.2.
(6)

Show that problem (6) can be formulated as a linear program. You do not need to

convert your linear program to standard form.

Solve problem (6) using cvx or cvxpy, and compare the solution that you obtain against

x∗ by plotting both vectors on the same figure.

3Recall that the ℓ1 and ℓ∞ norms of x ∈ Rn are defined as ∥x∥1 =
∑n

i=1 |xi| and ∥x∥∞ = maxi=1,...,n |xi|.
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Problem 4: Getting to the bottom of a ski-friendly function

A differentiable function f : Rn → R is said to be ski-friendly if it satisfies

1

2
∥∇f(x)∥2 ≥ µ ·

(
f(x)− f ∗) (7)

for all x ∈ Rn and for some µ > 0. Here, ∥∇f(x)∥ denotes the two-norm of the gradient of f

at x and f ∗ ∈ R denotes the minimum value of f . Ski-friendly functions appear in the study

of certain families of neural nets. While not necessarily convex, they have certain attractive

properties which we examine in this problem.
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(a) An example of a univariate ski-friendly function is g(x) = x2 + 3 sin2(x) (you are not

required to verify this, but can plot the function for fun to see if you can ski on it). Show

that this function is not convex.

(b) Show that every local minimum of a ski-friendly function is a global minimum. (This is

the same property that convex functions enjoy.)

(c) Suppose in addition to being ski-friendly, a function f : Rn → R satisfies

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
∥y − x∥2

for all x, y ∈ Rn and for some scalar L > 0. Suppose we start at an initial point x0 ∈ Rn

and run gradient descent on f with a constant step size of 1
L
:

xk+1 = xk −
1

L
∇f(xk).

Show that

f(x1)− f ∗ ≤ β ·
(
f(x0)− f ∗)

for a constant β that only depends on µ and L. Give an expression for β in terms of µ

and L.

(d) Suppose µ and L are such that β ∈ (0, 1). How many iterations of gradient descent does

it take to halve the optimality gap? In other words, write down the smallest integer t

(in terms of µ and L) that ensures

f(xt)− f ∗ ≤ 1

2

(
f(x0)− f ∗).
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